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PREFACE

Tais book deals with the fundamental principles of hydraulics
and their application in engineering practice. Though many
formulas applicable to different types of problems are given, it
has been the aim of the authors to bring out clearly and logically
the underlying principles which form the basis of such formulas
rather than to emphasize the importance of the formulas them-
selves.

Our present knowledge of fluid friction has been derived
largely through experimental investigation and this has resulted
in the development of a large number of empirical formulas.
Many of these formulas have necessarily been included but,
in so far as possible, the base formulas to which empirical coeffi-
cients have been applied have been derived analytically from
fundamental consideration of basic principles.

The book is designed as a text for beginning courses in
hydraulics and as a reference book for engineers who may be
interested in the fundamental principles of the subject. Tables
of coefficients are given which are sufficiently complete for class-
room work, but the engineer in practice will need to supplement
them with the results of his own experience and with data obtained
from other published sources.

Chapters I to VI inclusive and Chapter XI were written by
Professor Wisler and Chapters VII to X inclusive were written
by Professor King. Acknowldgement for material taken from
many publications is made at the proper place in the text.

H. W. K.

C. 0. W.
Unaversity of Michigan,
April, 1922,
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HYDRAULICS

CHAPTER 1
INTRODUCTION

1. Fluids.—Fluids are substances which possess unlimited
mobility and which offer practically no resistance to change of
form. A perfect fluid yields to the slightest tangential stress,
and can therefore have no tangential stress if it is at rest. Fluids
may be divided into two classes, (a) liquids, or fluids that are
practically incompressible, and (b) gases, or fluids that are highly
compressible.

2. Definitions.— Hydraulics is the science embodying the
laws that relate to the behavior of liquids, and particularly of
water. In its original sense the term hydraulics was applied
only to the flow of water in conduits, but the scope of the word
has been broadened by usage.

Hydraulics may be divided conveniently into three branches:
(a) hydrostatics, which deals with liquids at rest, (b) hydrokinetics,
which treats of the laws governing the flow of liquids, and (c)
hydrodynamics, which relates to the forces exerted upon other
objects by liquids in motion or upon liquids by other objects in
motion.

The fundamental laws of hydraulics apply equally to all
liquids, but in hydrokinetics empirical coefficients must be mod-
ified to conform to the liquid considered. Water is the most
common liquid and the only one that is of general interest to
engineers.

3. Units Used in Hydraulics.—It is common practice in the
United States and Great Britain to base hydraulic computations
on the foot-pound-second system of units. In practically all
hydraulic formulas these units are used, and if not otherwise
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stated they are understood. Frequently the diameters of pipes
or orifices are expressed in inches, pressures are usually stated in
pounds per square inch, and volumes may be expressed in gallons.
Before applying such data to problems, conversion to the foot-
pound-second system of units should be made. Care in the
conversion of units is essential. Errors in hydraulic computa-
tions result more frequently from wrong use of units than from
any other cause.

4. Weight of Water.—Water has its maximum density at a
temperature of 39.3° F. At this temperature pure water has
been given a specific gravity of unity and it thus serves as a
standard of density for all substances. The density of water
decreases for temperatures above and below 39.3°. It freezes
at 32° and boils at 212° F. The weight of pure water at its
temperature of maximum density is 62.424 lbs. per cubic foot.
The weights at various temperatures are given in the following
table:

WEIGHT oF PURE WATER

Tempera- | Pounds Tempera- Pounds Tempera- Pounds
ture, per | ture, per ture, per
Fahrenheit| cubic foot || Fahrenheit| cubic foot || Fahrenheit| cubic foot
32° 62.416 90° 62.118 160° 61.006
39.3 62.424 100 61.998 170 60.799
40 62.423 110 61.865 180 60. 586
50 62.408 120 61.719 190 60.365
60 62.366 130 61.555 200 60.135
70 62.300 140 61.386 210 59.893
80 62.217 150 61.203 212 59.843

For temperatures above the boiling point Rankine gives the
following approximate formula: w being the weight of water in
pounds per cubic foot and T the temperature in degrees Fahren-

heit,

124.85

Y=TFa61, 500

500

" T+461

0

As water occurs in nature, it invariably contains a certain

amount of salts and mineral matter in solution.

Silt or other
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impurities may also be carried in suspension. These substances
are invariably heavier than water and they therefore increase its
weight. The impurities contained in rivers, inland lakes and
ordinary ground waters do not usually add more than one-tenth
of a pound to the weight per cubic foot. Ocean water weighs
about 64 lbs. per cubic foot. After long-continued droughts the
waters of Great Salt Lake and of the Dead Sea have been found
to weigh as much as 75 lbs. per cubic foot.

Since the weight of inland water is not greatly affected by
ordinary impurities nor changes of temperature, an average
weight of water may be used which usually will be close enough
for hydraulic computations. In this book the weight of a cubic
foot of water is taken as 62.4 lbs. Sea water will be assumed
to weigh 64.0 1bs. per cubic foot unless otherwise specified. In
very precise work weights corresponding to different temperatures
may be taken from the above table.

6. Compressibility of Water.—Water is commonly assumed to
be incompressible, but in reality it is slightly compressible. Upon
release from pressure water immediately regains its original volume.
For ordinary pressures the modulus of elasticity is constant—
that is, the amount of compression is directly proportional to the
pressure applied. The modulus of elasticity, E, varies with the
temperature as shown in the following table.

Temperature, Modulus of elasticity,
Fahrenheit pounds per square inch
35° 288,000
77 327,000
212 360,000

These values hold only for pressures below 1000 lbs. per
square inch. Hite obtained a reduction in volume of 10 per cent
for a pressure of 65,000 Ibs. per square inch, giving a value of E
of 650,000 for this high intensity of pressure.

The compressibility of water usually affects the solution of
practical problems in hydraulics only by changing its unit weight.
Since pressures commonly encountered are relatively small, in
most cases water may be considered incompressible without
introducing any appreciable error.
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6. Viscosity.—One of the characteristic properties of a liquid
is its ability to flow. A perfect liquid would be one in which every
particle could move in contact with adjacent particles without
friction. The pressures between all such particles would be normal
to their respective surfaces at the points of contact since there
could be no tangential stress without friction. All liquids are
capable, however, of resisting a certain amount of tangential
stress, and the extent to which they possess this ability is a
measure of their viscosity.

Water is one of the least viscous of all liquids. Oil, molasses
and wax are examples of liquids having greater viscosity.

7. Surface Tension.—At any point within a body of liquid
the molecules are attracted towards each other by equal forces.
The molecules forming the surface layer, however, are subjected
to an attraction downward that is not balanced by an upward
attraction. This causes a film or skin to form on the surface and
results in many interesting phenomena. A needle may be made to
float upon water so long as the surface film is not broken, but it
will sink immediately when the film is broken. Surface tension
causes the spherical shape of dewdrops or drops of rain. This
phenomenon also makes possible the hook gage described in
Art. 86. Where water flows in an open conduit, surface tension
retards velocities at the surface, the maximum velocity ordinarily
being below the surface (see Art.110). Capillary action is also
- explained by the phenomenon of surface tension combined with
that of adhesion.

A (Fig. 1) illustrates an open tube of small diameter im-
mersed in a liquid that wets
the tube. Water rises in the
tube higher than the level out-
side, the meniscus being con-
cave upward. The tube B is
immersed in mercury or some

Fic. 1. other liquid which does not

wet the tube. In this case the

meniscus is convex upward and the level of the liquid in the tube
is depressed. The effect of capillarity decreases as the size of
tube increases. The water in a tube one-half inch in diameter
is approximately at the same level as the outside water, but it
is appreciably different for smaller tubes. For this reason,
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piezometer tubes (Art. 21) should not have diameters much
smaller than one-half inch.

8. Accuracy of Computations.—Accuracy of computations is
most desirable, but results should not be carried out to a greater
number of significant figures than the data justify. Doing this
implies an accuracy which does not exist and may glve results
that are entirely misleading.

Suppose, for example, that it be desired to determine the
theoretical horse-power available in a stream where the discharge
is 311 cu. ft. per second and the available head is 12.0 ft. The
formula to be used is

wQH
H.P.= =50

where w=the weight of a cubic foot of water;
Q=the discharge in cubic feet per second;
H =the available head.

Substituting in the formula,

62.4Xx311X12.0
550

Referring to the table, page 2, it is seen that for the ordinary
range of temperatures the weight of water may vary from 62.30
to 62.42 lbs. per cubic foot. Furthermore, the statement that the
discharge is 311 cu. ft. per second means merely that the exact
value is more nearly 311 than 310 or 312. In other words, the
true value may lie anywhere between 310.5 and 311.5. Likewise,
the fact that the head is given as 12.0 merely indicates that the
correct value lies somewhere between 11.95 and 12.05. Therefore
substituting in the formula the lower of these values,

62.30X310.5X11.95
550

Again substituting in the formula the higher of the possible
values,

=423 .41 horse-power.

=420.30 horse-power.

62.42Xx311.5X12.05
550

It is evident, therefore, that the decimal .41 in the original
answer 423.41 is unjustified, and that the last whole number, 3,

=426 .00 horse-power.
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merely represents the most probable value, since the correct
value may lie anywhere between 420.30 and 426.00. The answer
should, therefore, be given as 423.

It may be stated in general that in any computation involving
multiplication or division, in which one or more of the numbers is
the result of observation, the answer should contain the same
number of significant figures as is contained in the observed quan-
tity having the fewest significant figures. In applying this rule it
should be understood that the last significant figure in the answer
18 not necessarily correct, but represents merely the most probable
value. To give in the answer a greater number of significant
figures indicates a degree of accuracy that is unwarranted and
misleading.



CHAPTER 11
PRINCIPLES OF HYDROSTATIC PRESSURE

9. Intensity of Pressure.—The intensity of pressure at any
point in a liquid is the amount of pressure per unit area.

If the intensity of pressure is the same at every point on any
area, A,

P
p—Z,.......A.(l)

the symbol p representing the intensity of pressure and P the
total pressure acting upon the area.

If, however, the intensity of pressure is different at different
points, the intensity of pressure at any point will be equal to the
pressure on a small differential area surrounding the point divided
by the differential area, or

dP
p= (H. e e e e e e e e (2)

Intensities of pressure are commonly expressed in pounds
per square inch and pounds per
square foot. Where there is no
danger of ambiguity, the term
pressure is often used as an abbre-
viated expression for intensity of
pressure.

10. Direction of Resultant
Pressure.—The resultant pressure
on any plane in a liquid at rest is
normal to that plane.

Assume that the resultant pres-
sure P, on any plane AB (Fig. 2), Fa. 2.
makes an angle other than 90° with the plane. Resolving P
into rectangular components P, and P, respectively parallel

7
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with and perpendicular to AB, gives a component P; which can
be resisted only by a tangential stress. By definition, a liquid at
rest can resist no tangential stress and therefore the pressure
must be normal to the plane. This means that there can be no
static friction in hydraulics.

11. Pascal’s Law.—At any point within a liquid at rest, the
intensity of pressure is the same in all directions. This principle
is known as Pascal’s Law.

Consider an infinitesimally small wedge-shaped volume, BCD
(Fig. 3), in which the side BC is vertical, CD is horizontal and

BD makes any angle 6 with the hori-

zontal. Let A;, A2 and A3 and pi,

pe and p3 represent, respectively the

areas of these sides and the intensities

of pressure to which they are subjected.

Assume that the ends of the wedge are
X vertical and parallel.

Since the wedge is at the rest, the
principles of equilibrium may be ap-
plied to it. From Art. 10 it is known
that the pressures are normal to the
faces of the wedge. Choosing the

coordinate axes as indicated in Fig. 3 and setting up the equations
of equilibrium, ZX=0 and ZY =0, and neglecting the pressures
on the ends of the wedge, since they are the only forces acting
on the wedge which have components along the Z-axis and
therefore balance each other, the following expressions result;

Fia. 3.

mA;=p3A3sin 6,

peA2=p3A3 cos 6.
But
Assin 6=A4; and Ajscos 6=A,.
Therefore
P1=p2=pa3.

Since BD represents a plane making any angle with the hori-
zontal and the wedge is infinitesimally small so that the sides may
be considered as bounding a point, it is evident that the intensity
of pressure at any point must be the same in all directions.
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12. Free Surface of a Liquid.—Strictly speaking, a liquid
having a free surface is one on whose surface there is absolutely
no pressure. It will be shown later, however, that there is always
some pressure on the surface of every liquid.

In practice the free surface of a liquid is considered to be a
surface that is not in contact with the cover of the containing
vessel. Such a surface may or may not be subjected to the pres-
sure of the atmosphere. ‘

It may be shown that the free surface of a liquid at rest is
horizontal. Assume a liquid having a surface which is not hori-
zontal, such as ABCDE (Fig.
4). A plane MN, inclined to
the horizontal, may be
passed through any liquid
having such a surface in such
manner that a portion of the
liquid BCD lies above the plane. Since the liquid is at rest, BCD
must be in equilibrium, but the vertical force of gravity would
necessarily have a component along the inclined plane which
could be resisted only by a tangential stress. As liquids are in-

" capable of resisting tangential stress it follows that the free surface
must be horizontal.

13. Atmospheric Pressure.—All gases possess mass and con-
sequently have weight. The atmosphere, being a fluid composed
of a mixture of gases, exerts a pressure on every surface with
which it comes in contact. At sea level under normal conditions
atmospheric pressure amounts to 2116 lbs. per square foot or about
14.7 1bs. per square inch.

Fia. 4.

VARIATION IN ATMOSPHERIC PRESSURE WITH ALTITUDE

Altitude above Press:;e mn Altitude above Press:sre mn
sea level in feet pounds per sea level in feet pounds per
square inch square inch

0 14.7 5,280 12.0

1000 14.15 6,000 11.7

2000 13.6 7,000 11.3

3000 13.1 8,000 10.9

4000 12.6 9,000 10.5

5000 12.1 10,000 10.1
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The intensity of atmospheric pressure decreases with the
altitude. Owing to compressibility, the density of air also
decreases with altitude, and therefore the intensity of pressure
changes less rapidly as the altitude increases. The accompanying
table gives approximate values of the atmospheric pressure corre-
sponding to different elevations above sea level.

14. Vacuum.—A perfect vacuum, that is, a space in which
there is no matter either in the solid, liquid or gaseous form, has
never been obtained. It is not difficult, however, to obtain a
space containing a minute quantity of matter. A space in contact
with a liquid, if it contains no other substance, always contains
vapor from that liquid. In a perfect vacuum there could be no
pressure.

In practice, the word “vacuum” is used frequently in con-
nection with any space having a pressure less than atmospheric
pressure, and the term “amount of vacuum” means the amount
the pressure is less than atmospheric pressure. The amount
of vacuum is usually expressed in inches of mercury column
or in pounds per square inch measured from atmospheric pressure
as a base. For example, if the pressure within a vessel is reduced
to 12 lbs. per square inch, which is equivalent to 24.5 in. of mer-
cury column, there is said to be a vacuum of 2.7 lbs. per square
inch or 5.5 inches of mercury. (Arts. 20 and 22.)

16. Absolute and Gage Pressure.—The intensity of pressure
above absolute zero is called absolute pressure. Obviously, a
negative absolute pressure is impossible.

Usually pressure gages are designed to measure the intensities
of pressure above or below atmospheric pressure as a base. Pres-
sures so measured are called relative or gage pressures. Negative
gage pressures indicate the amount of vacuum, and at sea level
pressures as low as, but no lower than, —14.7 lbs. per square inch
are possible. Absolute pressure is always equal to gage pressure
plus atmospheric pressure.

Fig. 5 illustrates a gage dial, on the inner circle of which is
shown the ordinary gage and vacuum scale. The outer scale
indicates the corresponding absolute pressures.

16. Intensity of Pressure at any Point.—To determine the
intensity of pressure at any point in a liquid at rest or the variation
in pressure in such a liquid, consider any two points such as 1 and
2 (Fig. 6) whose vertical depths below the free surface of the
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liquid are h; and he, respectively. Consider that these points lie
in the ends of an elementary prism of the liquid, having a cross-
sectional area dA and length l. Since this prism is at rest, all of
the forces acting upon it must be in equilibrium. These forces
consist of the fluid pressure on the sides and ends of the prism
and the force of gravity,

Fia. 5.—Gage dial. Fia. 6.

Let X and Y, the coordinate axes, be respectively parallel
with and perpendicular to the axis of the prism which makes an
angle 6 with the vertical. Also let p; and p2 be the intensities of
pressure at points 1 and 2, respectively, and w be the unit weight of
the liquid.

Considering forces acting to the left along the X-axis as
negative and remembering that the pressures on the sides of the
prism are normal to the X-axis and therefore have no X com-
ponents, the following equation may be written:

ZX =p1dA —p2dA —wldA cos 6=0.
Since I cos 8= h; — hg, this reduces to
p1—pe=whi—hg). . . . . . . 3

From this equation it is evident that in any liquid the difference
in pressure between any two points is the product of the unit
weight of the liquid and the difference in elevation of the points.

If hy = h2, ;1 must equal p2; or, in other words, in any continuous
homogeneous body of liquid at rest, the intensities of pressure at
all points in a horizontal plane must be the same. Stated con-
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versely, in any homogeneous liquid at rest all points having equal
intensities of pressure must lie in a horizontal plane.

If in equation (3) ks is made equal to zero, p2 is the intensity of
pressure on the liquid surface. In case that pressure is atmos-
pheric, or ps, equation (3) becomes

pr=whi+ps,, . . . . . . . 4
or, in general,
p=wh+p.. . . . . . . . (5)

In this equation p is evidently the absolute pressure at any point
in the liquid at a depth & below the free surface. The correspond-
ing gage pressure is :

: p=wh. . . . . . . . . . (6

In the use of the above equations care must be taken to express
all of the factors involved in their proper units. Unless otherwise
stated p will always be understood to be intensity of pressure in
pounds per square foot, w will be the weight of a cubic foot of the
liquid and h will be measured in feet.

- At any point in a body of water at a depth h below the free
surface, the absolute pressure in pounds per square foot is

p=62.4h+2116.. . . . . . . (7
The relative or gage pressure in pounds per square foot is

p=62.4h. . . . . . . . . . (8

If, however, it is desired to express the pressure in pounds per
square inch it is necessary only to divide through by 144. Hence
if p’is used to express absolute pressure in pounds per square
inch,

,_ P _62.4, 2116

P'=144~ 144" Tid

=.433h+14.7,

or, expressed as gage pressure in pounds per square inch,

p' = .433h.
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17. Pressure Head.—Equation (6) may be written in the form,

=h.........(9)-

g

Here h, or its equivalent, 5, represents the height of a column of

liquid of unit weight w that will produce an intensity of pressure,
p. It is therefore called pressure head.

In considering water pressures the pressure head, A, is expressed
in feet of water column regardless of whether it is obtained by
dividing the pressure in pounds per square foot by 62.4 or by
dividing the pressure in pounds per square inch by 0.433.

18. Transmission of Pressure.—Writing equation (3) in the
form,

'p1=p2+w(h1—h2), e e e e e e (10)

it is evident that the pressure at any point, such as point 1 (Fig. 6 ),
in a liquid at rest is equal to the pressure at any other point, such
as point 2, plus the pressure produced by a column of the liquid
whose height, k, is equal to the difference in elevation between the
two points. Any change in the intensily of pressure at point 2
would cause an equal change at point 1. In other words, a pres-
sure applied at any point in a liquid at rest is transmitted equally
and undiminished to every other point in the liquid.

This principle is made use of in the hydraulic jack by means
of which heavy weights are lifted by the application of relatively
small forces.

Ezxample.—In Fig. 7 assume that the piston and weight, W,
are at the same elevation, the face of the piston havirg an area of
2 sq. in. and the face of the

weight 20 sq. in. What weight 324~ s
W can be lifted by a force P of —1°
100 lbs. applied at the end of w
the lever as shown in the H %
figure? > ~—

Since atmospheric pressure Fia. 7.—Hydraulic jack.

is acting on both the piston
and weight its resultant effect will be zero and it may therefore be
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neglected. Taking moments about O the force F on the piston is
4F=4X100
F =600 lbs.
%=300 Ibs. per square inch.
which is the intensity of pressure on the face of the piston, and

since the two are at the same elevation in a homogeneous liquid
at rest it is also the intensity of pressure on the weight. Therefore

W=20X300
=6000 lbs.

Evidently this is the value of W for equilibrium; any weight less
than 6000 pounds could be lifted by the force of 100 lbs.

19. Vapor Pressure.—Whenever the free surface of any liquid
is exposed to the atmosphere, evaporation is continually taking
place. If, however, the surface is in contact with.an enclosed
space, evaporation takes place only until the space becomes
saturated with vapor. This vapor produces a pressure, the
amount of which depends only upon the temperature and is
entirely independent of the presence or absence of air or other
gas within the enclosed space. The pressure exerted by a vapor
within a closed space is called vapor pressure.

In Fig. 8, A represents a tube having its open end submerged

in water and a stopcock at its

Q_J upper end. Consider the air

- within A to be absolutely dry
at the time the stopcock is
closed. At the instant of
closure the water surfaces in-
side and outside the tube will
stand at the same level
Evaporation within the tube,
however, will soon saturate the
space containing air and create
a vapor pressure, p, which
will cause a depression of the

Do

water surface within the vessel equal to —.
w

1
slg'
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In the same figure, B represents a tube closed at the upper end.
Assume a perfect vacuum in the space above the water in the tube.
If this condition were possible the water level in B would stand

at an elevation %’ above the water surface outside. Vapor

pressure within the vessel, however, causes a depression %— exactly
equal to that produced within A, so that the maximum height of
water column possible under conditions of equilibrium in such a

tube is p;;_p_.. Vapor pressures increase with the temperature,

as is shown in the following table.

VarPor PreEssUREs OF WATER IN FEeT or WATER CoLUMN

Tempera- Po Tempera- Po_ Tempera- Ps
ture, F. w ture, F. w ture, F. w
—20° 0.02 60° 0.59 140° 6.63
-10 .03 70 0.83 150 8.54
0 .05 80 . 1.16 160 10.90
10 .08 90 1.59 170 13.78
20 .13 100 2.17 180 17.28
30 .19 110 2.91 190 21.49
40 .28 120 3.87 200 26.52
50 .41 130 5.09 212 33.84

20. The Mercury Barometer.—The barometer is a device for.
measuring intensities of pressure exerted by the
atmosphere. In 1643 Torricelli discovered that
if a tube (Fig. 9) over 30 in. long and closed at
one end, is filled with mercury and then made
to stand vertically with the open end submerged
in a vessel of mercury, the column in the tube
will stand approximately 30 in. above the sur-
face of the mercury in the vessel. Such a device
is known as a mercury barometer. Pascal proved
that the height of the column of mercury depended
upon the atmospheric pressure, when he carried a F1a. 9.—Mercury
barometer to a higher elevation and found that barometer.
the height of the column decreased as the altitude increased.




16 PRINCIPLES OF HYDROSTATIC PRESSURE

Although theoretically water or any other liquid may be used
for barometers, two difficulties arise in using water. First, the
height of water column necessary to balance an atmospheric pres-
sure of 14.7 lbs. per square inch is about 34 feet at sea level, which
height is too great for convenient use; and, second, as shown in
Art, 19, water vapor colleciing in the upper portion of the tube
creates a pressure which partially balances the atmospheric pres-
sure, so that the barometer does not indicate the total atmospheric
pressure.

Since mercury is the heaviest known liquid and has a very low
vapor pressure at ordinary air temperatures it is more satisfactory
for use in barometers than any other liquid.

21. Piezometer Tubes.—A piezometer tube is a tube tapped

into the wall of a vessel or pipe for the purpose

of measuring moderate pressures. Thus the
height of water column in tube a (Fig. 10) is

a measure of the pressure at A, the top of the

pipe. Similarly the pressure at the elevation B

is measured by the height of water column in
- tube b, that is, p=wh. Piezometer tubes

always measure gage pressures since the water
Fie. 10.—Cross- surface in the tube is subjected to atmospheric

section of pipe yresayre, Obviously, the level to which water
with piezometer il rise i 1 be th dl
tubes. will rise in a tube wi the same regardless

of whether the connection is made in the side,
bottom or cover of the containing vessel.

Piezometer tubes are also used to measure pressure heads in
pipes where the water is in motion. Such tubes should enter the
pipe in a direction at right angles to the direction of flow and the
connecting end should be flush with the inner surface of the pipe.
If these precautions are not observed, the height of water column
may be affected by the velocity of the water, the action being
similar to that which occurs in Pitot tubes. (See Art. 48.)

In order to avoid the effects of capillary action, piezometer
tubes should be at least % in. in diameter.

Pressures less than atmospheric pressure may be measured by
either of the methods illustrated in Fig. 11 which shows a pipe
section AB in which the water is flowing. The vertical distance,
h, which the water surface, C, in the open tube drops below A
is a measure of the pressure below atmospheric pressure, or, in
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other words, it is a measure of the amount of vacuum existing at
A. This is true since the pressure at C’ is atmospheric, being at
the same level as C in a homogeneous liquid at rest and the
pressure at A must be less than at C’ by the amount wh. (See
Art. 17.)

To the right in Fig. 11 is shown an inverted piezometer tube
with the lower end immersed in an open vessel containing water.
Atmospheric pressure acting on the water surface in the vessel
forces water to rise in the tube to a height h which measures the
vacuum existing at B. Air will be drawn into the pipe at B
until the intensity of pressure on the water surface in the tube
equals the pressure at B. Neglecting the weight of the air in
the tube, it is evident that pp=pp=p.—wh. Here psis expressed
as absolute pressure since atmospheric pressure is included in
the equation,

Fia. 11. Fia. 12.—Mercury gage.

22. Mercury Cage.—In the measurement of pressures so great
that the length of tube required for a water piezometer would be
unwieldy, the mercury U-tube, illustrated in Fig. 12, is a con-
venient substitute.

Water under pressure fills the pipe, or vessel at A and the tube
down to the level D. Mercury fills the tube from D around to B,
above which level the tube is open to the atmosphere.

The pressure at C equals the pressure at B which is atmos-
pheric, or ps, plus the pressure produced by the mercury column,
h. Hence,

pe=pat+wh. . . ., . . . (11)

If pc and p. are expressed in pounds per square foot and h
in feet, w’ is the weight of a cubic foot of mercury, or 13.6 (specific
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‘gravity of mercury) X62.4=848 lbs. If, however, pc and pas are
expressed in pounds per square inch and % in feet,

w’=%§ (or 13.6X0.433)=5.89.

The pressure at D (Fig. 12) is the same as at C, being at the
same level in a homogeneous liquid at rest. The pressure at A
is equal to that at C minus the pressure produced by the water
column a, or,

Pa=pc—wa. . . . . . . . (12

Here again if p4 and pc are expressed in pounds per square
foot and a in feet, w equals 62.4, but if p4 and pc are expressed
in pounds per square inch and a in feet, w equals 0433. Com-
bining equations (11) and (12),
=patwh—wa. . . . (13)

Here p4 is expressed as absolute pressure,
since pa (atmospheric pressure) enters into the
equation.

If pa is less than atmospheric pressure by
an amount greater than wa, & is negative, as in
Fig. 13, and

Ppa=pa—wh—wa, . . (14)

23. The Differential Gage.—The dif-
ferential gage as the name indicates, is
used only for measuring differences in pres-
sure. A liquid heavier or lighter than water
is used in the gage, depending upon whether
the differences in pressure to be measured
are great or small.

In Fig. 14 is shown the form of dif-
ferential gage usually employed for meas-
uring large differences in pressure. M and
N are two pipes containing water under
different pressures which may be either
greater or less than atmospheric pressure.
The two pipes are connected by a bent
tube, of which the portion BCD is filled with mercury, while all
of the remaining space is filled with water.

Fig. 14.—Differential
mercury gage.
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If M and N were at the same elevation the difference in pres-
sure in the two pipes would be measured by the pressure due to the
mercury column DC minus that due to the water column EF
or would equal w'h—wh. '

If the two pipes are at different elevations, to the above
difference in pressure must be added or subtracted the intensity
of pressure produced by the water column whose height is equal
to the difference in elevation of the pipes. Proof of these state-
ments follows.

The pressure at A equals that at M minus the pressure produced
by the water column whose height is a. Evidently the pressure
at B is the same as at A, being at the same elevation in a homo-
geneous liquid at rest. For the same reason the pressures at
B and C are also equal. Hence,

pc=Pp=pa=pu—wa. . . . . . (18)
The pressures at C and F are not equal, since these points are
not connected by a homogeneous liquid.

The pressure at D is equal to that at C minus the pressure
produced by the mercury column h and is

po=pc—wh. . . . . . . . . (16)
PE=DPp
and

pv=pe+w(h+Db).
Combining these equations

pu—wa—wh+wh+wb=py, . (A7)
or
pu—pry=wh—wh—wbd—a). . (18)

Obviously, the greater the difference between
w’ and w the greater the difference in pressure
that can be measured for any given value
of h.

Fig. 15 illustrates a type of differential
gage used when the difference in pressures to
be measured is small. Usually a liquid, such
as a light oil, whose specific gravity is slightly
less than unity is used in the upper portion of the inverted U-tube,
AC, the remainder of the tube being filled with water.

Fia. 15.—Differential
oil gage.
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As with the mercury gage, if M and N are at the same elevation
the difference in pressure will be equal to that produced by the
oil column AB and the water column CD. If M and N are at
different levels, then

puy—wa—wh+wh+wb=pyr . . . . (19)
or
pu—pv=wh—wh—wbd—a), . . . . (20)

the equations being the same as were obtained for the mercury
differential gage.

The use of a liquid whose unit weight w' is very nearly the
same as that of water makes a very sensitive measuring device.
With such a device small differences in pressure will produce
relatively large values of h.

The value of k produced by any particular difference in pressure
is independent of the relative cross-sectional areas of the columns
ABand CD. This is evident since it is the difference in intensities
of pressure that is measured and not difference in total pressures.

24. Suction Pumps and Siphons.—Suction pumps depend upon
atmospheric pressure for their operation. The plunger creates a
partial vacuum in the pump stock, and atmospherie pressure acting -
upon the outer water surface causes water to rise within the
pump.

The operation of siphons is also produced by atmospheric
pressure. In Fig. 16 the two
vessels, A and B, are connected
by a tube. As long as the tube
is filled with air there is no
tendency for water to flow. If,
however, air is exhausted from
the tube at C, atmospheric
pressure will cause water to rise

. in each leg of the tube an equal

Fa. 16—Siphon. height above the water sur-

faces. When water has been drawn up a distance d, equal to the
height of the summit above the water surface in the upper vessel
flow from A to B will begin. If the velocity of the water is high
cnough, any air entrapped in the tube will be carried out
by the moving water, and the tube will flow full. If the sum-
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mit of the siphon is a distance greater than 2"—;72' above the

water surface in the higher vessel, siphon action is impossible.

It is not necessary that the discharge end of the tube be sub-
merged to induce siphon action. If flow is started by suction at
the free end of the tube or by other means, it will continue as long
as the discharge end of the tube is lower than the water surface
in the vessel or until the vacuum in the siphon is broken,

PROBLEMS

1. Determine the intensity of pressure on the face of a dam at a point
40 ft. below the water surface.

(a) Expressed in pounds per square foot gage pressure.

(b) Expressed in pounds per square inch gage pressure.

(c) Expressed in pounds per square foot absolute pressure.

(@) Expressed in pounds per square inch absolute pressure.

2. Determine the intensity of pressure in a vessel of mercury (sp. gr.=13.6)
at a point 8 in. below the surface, expressing the answer in the same units as
in Problem 1.

3. A vertical pipe, 100 ft. long and 1 in. in diameter, has its lower end open
and flush with the inner surface of the cover of a box, 2 ft. square and 6 in.
high. The bottom of the box is horizontal. Neglecting the weight of the
pipe and box, both of which are filled with water, determine:

(a) The total hydrostatic pressure on the bottom of the box.

(b) The total pressure exerted on the floor on which the box rests,

4. At what height will water stand in a water barometer at an altitude
of 5000 ft. above sea level if the temperature of the water is 70° F.? Under
similar conditions what would be the reading of a mercury barometer,
neglecting the vapor pressure of mercury?

6. What are the absolute and gage pressures in pounds per square inch
existing in the upper end of the water barometer under the conditions of
Problem 4?

6. What height of mercury column will cause an intensity of pressure of
100 Ibs. per square inch? What is the equivalent height of water column?

7. A pipe 1 in. in diameter is connected with a cylinder 24 in. in diameter,
each being horizontal and fitted with pistons. The space between the pistons
is filled with water. Neglecting friction, what force will have to be applied
to the larger piston to balance a force of 20 Ibs. applied to the smaller piston?

8. In Problem 7, one leg of a mercury U-tube is connected with the
smaller cylinder. The mercury in this leg stands 30 in. below the center of
the pipe, the intervening space being filled with water. What is the height
of mercury in the other leg, the end of which is open to the air ?

9. A U-tube with both ends open to the atmosphere contains mercury
in the lower portion. In one leg, water stands 30 in. above the surface of the
mercury; in the other leg, oil (sp. gr.=0.80) stands 18 in. above the surface
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of the mercury. What is the difference in elevation between the surfaces of
the oil and water columns?

10. Referring to Fig. 15, page 19, if the pressure at M is 20 lbs. per square
inch, what is the corresponding pressure at N if a=1 ft., b=4 ft. and ,=8in.?
(Sp. gr. of 0il =0.80.)

11, In Fig. 15, page 19, determine the value of h, if a=1 ft., b=4 ft. and the
pressure at N is 1.4 lbs. per square inch greater than at M. (Sp. gr. of oil
0.80.)

12. A vertical tube 10 ft. long, with its upper end closed and lower end
open, has its lower end submerged 4 ft. in a tank of water. Neglecting vapor
pressure, how much will the water level in the tube be below the level in the
tank?

18. In Fig. 7, page 13, if the diameters of the two cylinders are 3 in. and
24 in. and the face of the smaller piston is 20 ft. above the face of the-weight
W, what force P is required to maintain equilibrium if W =8000 lbs.?

14. Referring to Fig. 12, page 17, if h=20 in. and a=12 in., what is the
absolute pressure in pounds per square inch at A? What is the gage pressuré?

16. In Problem 14, if the surface of the mercury column in each legof the
U-tube stands at the same elevation as A when the pressure at A is atmos-
pheric, determine the values of @ and h when the gage pressure at A is 12 lbs.
per square inch, the diameter of the tube being the same throughout.

16. Referring to Fig. 13, page 18, determine the absolute pressure in
pounds per square inch at A when a=8 in. and A=10in. What is the corre-
sponding gage pressure?

17. In Fig. 14, page 18, let ¢=6 ft., and assume that h=0 when the
pressure at M is atmospheric. If the pressure at N remains constant, determine
the value of h when the gage pressure at M is increased to 8 lbs. per square
inch.

18 In Fig. 14, page 18, if a=24 in. and ¢=6 ft., what is the value of %
when the pressure at M is 10 lbs. per square inch greater than at N.

19. A and B are, respectively, the closed and open ends of a U-tube,
both being at the same elevation. For a distance of 18 in. below A, the
tube is filled with oil (sp. gr.=0.8); for a distance of 3 ft. below B, the tube
is filled with water, on the surface of which atmospheric pressure is acting.
The remainder of the tube is filled with mercury. What is the absolute
pressure at A expressed in pounds per square inch?

20, In Problem 19, if B were closed and A were open to the atmosphere,
what would be the gage pressure at B, expressed in pounds per square inch?




CHAPTER 1III
PRESSURE ON SURFACES

26. Total Pressure on Plane Areas.—The total pressure on
any plane surface is equal to the product of its area and the
intensity of pressure at its centeér of gravity. This may be proved
as follows:

Fig. 17 shows projections on two vertical planes normal to

N
(e) ()

Fia. 17.

each other, of any plane surface, MN, subjected to the full static
pressure of a liquid with a free surface. Projection (b) is on a
plane at right angles to MN. The surface MN makes any angle,
6, with the horizontal, and, extended upward, the plane of this
surface intersects the surface of the liquid in the line 0O, shown
as the point O in ().

Consider the surface MN to be made up of an infinite number
of horizontal strips each having a width dy so small that the

22 .
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intensity of pressure on it may be considered constant. The area
of any strip whose length is z, is "

dA =zdy.

The liquid having a unit weight of w, the intensity of pressure on
any strip at a depth A below the surface and at a distance y from the
line 00 is

p=wh=wy sin 0,

The total pressure on the strip is
dP=wysin 0 dA
and the total pressure on MN is A
P=wsin nydA. B )]
From the definition of center of gravity, - | .
Jud=ay, . .. ... ... @

where ¢’ is the distance from the line OO to the center of gravity
of A. Hence,
P=wsin6Ay. . . . . . . (3)

Since the vertical depth of the center of gravity below the water
surface is

hK=y'sing, . . . . . . . . @
it follows that

P=wh'A, . . . . . . . . (b

where wh’ represents the intensity of pressure at the center of
gravity of A.

26. Center of Pressure on Plane Areas.—Any plane surface
subjected to hydrostatic pressure is acted upon by an infinite
number of parallel forces whose magnitudes vary with the depth,
, below the free surface, of the various infinitesimal areas on which
the respective forces act. Since these forces are parallel they may
be replaced by a single resultant force P. The point on the
surface at which this resultant force acts is called the center of
pressure. In other words, if the total hydrostatic pressure on any
area were applied at the center of pressure the same effect would be
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produced on the area as is produced by the variable pressures
distributed over the area.

The position of the horizontal line containing the center of
pressure of a plane surface subjected to hydrostatic pressure may
be determined by taking moments of all the forces acting on the
area about some horizontal axis in the plane of the surface. For
the case described in the preceding article and illustrated in
Fig 17, the line OO may be taken as the axis of moments for the
surface MN. Designating by y the distance to the center of
pressure from the axis of moments, it follows from the defini-
tion of center of pressure that,

| Py=fydP, . . . . . ... (6
or
_ JyaP
y='[—P'.........(7)

It was shown in Art. 25 that

dP=wysin 6 dA
and
P=wsin0Ay. . . . . . . 3

Substituting these values, equation (7) becomes

_ wsin 6fy?dA Jrda.
v= wsinl)Ay’= Ay.’i SRR C)

in whjchfysz is the moment of inertia, Iy, of MN with respect
to the axis 00, and Ay’ is the statical moment, S, of MN with
respect to the same axis.
Therefore, .
~ I 7.
=5 T . . e .. . (9
S ///}/, ( )

Since the moment of inertia of an area about any axis equals
the moment of inertia of the area about a parallel axis through its
center of gravity plus the product of the area and the square of the
distance between the two axes, equation (9) may be written,

_ AR+ Ay?
== .. . ... Q0
="y (10)
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: — k2

or =y 7 —
y=y'+-= d‘(, va.(, &A)

where k is the radius of gyratlon of the areaahout ho, f,L,L /J tol @ 0

The above discussion refers only to the determination of the
position of the horizontal line which contains the center of pressure
—that is, 7 gives only the distance from the horizontal axis of
moments to the center of pressure. For any figure such that the
locus of the midpoints of the horizontal strips is a straight line,
as, for instance, a triangle or trapezoid with base horizontal, the
center of pressure falls on that straight line. It is with such
figures that the engineer is usually concerned. For other figures,
the horizontal location of the center of pressure may be found in

Fic. 18.

a manner similar to that described above by taking moments
about an axis, within the plane of the surface, at right angles to the
horizontal axis of moments.

Ezxamples!: (a) Find the center of pressure on the vertical
triangular gate shown in Fig. 18,

11t is apparent that the solution of any problem involving the location of the
center of pressure, for an area whose radius of gyration is known or can be
readily found, may be accomplished by the simple substitution of values for
k and »' in equation (11). This involves a mere mathematical process with
no necessity on the part of the student for either thought or understanding
of fundamental principles. It is therefore recommended that the beginner
solve all such problems by the use of equation (6) which is really nothing
more than a formulated expression of the definition of center of pressure.
The examples given are solved by this method.
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Using the equation
Pj=fydP . . . . . . . (6

it will be necessary to express dP in terms of y.

In this case it will be convenient to take moments about 0-0,
a'horizontal line through the vertex of the gate, lying in the plane
of the gate. Moments could, however, be taken about any other
horizontal axis lying within this plane.

The total pressure dP on any thin horizontal strip at a distance
y from the axis of moments equals the intensity of pressure, wh,
times the area d4, or

dP=whdA.

Since w.=62.4, h=5+y and dA=xdy
dP=62.4(5+y)r dy.

Since x varies with y it must be expressed in terms of y before
integrating.
From similar triangles,

z_ Yy _4
Z = § or r= gy.
Substituting,
dP=62.4X4 (5y+y?dy
and

f ydP=62.4X4 ]: (52 +12)dy,

P=wh'A=62.4X7X86,

also
therefore
_ 62.4x4 ]: 5y +y%)dy
y= 62.4x42 '
3
LRl
=& (EX27+1X%81)
=244 ft. below the vertex,

or 4 ft. below the center of gravity of the gate.

The horizontal location of the center of pressure in this case
is on the median connecting the vertex with the base.
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(b) Find the center of pressure on the inclined rectangular
gate shown in Fig. 19.

Taking moments again about the top of the gate as an axis,

fydp=fywh dA,

where
h=>5++1y cos 30°
\/_
5103,
and
dA =6dy

Fia. 19.

Since P=wh'A =62.4(5+2 cos 30°)24=62.4(5+§x2)24,

4
62.4X6 I <5y+3/2—§y2>dy
62.4X24(54+V'3)

ﬂ:
1 5, V3.t

e an=d)

1 5 V3
4(5+\/§)<§X16+_6—X64)

_ 58.47

=36.93

=2.17 ft. below AB,

measured along the plane of the gate. The horizontal location
of the center of pressure is 3 ft. from either end of the gate.
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(¢) In example (b) what force F applied normally to the gate
at its lower edge will be required to open it?

Knowing the total pressure, P, on the gate and the location
of the center of pressure, by taking moments about the upper
edge which is the center of rotation,

4F =2.17P

F=2—'411><62.4X24(5+\/§)

=5470 ]bs.

The value of F can also be found directly without determining
either the location of the center of pressure or the total pressure.
Taking moments about the top of the gate,

'”-‘1F="rydP
4
=f ywh dA
0

4
e[ (Lo
V3 4
=62.4x6[gy2+—6—3y3]0
=62.4X6(g->< 16+1/6§xs4)

=21890
F =5470 1bs.

If this force were applied at the bottom of the gate, the gate
would be in equilibrium and there would be no reaction on the
supports along the lower edge or sides of the gate. Any force
greater than 5470 lbs. would open the gate.

27. Graphical Method of Location of Center of Pressure.—
Semigraphic methods may be used advantageously in locating the
center of pressure on any plane area whose widtb is constant.
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The rectangular surface, A BCD, illustrated in Fig. 19 is shown in
perspective in Fig. 20a. BC (Fig. 20b) represents the projection
of the rectangle on a vertical plane perpendicular to the plane of
the surface. The vertical depths below the water surface of the
top and bottom of the rectangle are, respectively, k and he. The
intensity of pressure, wh;, on the top of the rectangle is represented
by the equal ordinates AA’ and BB’ (Fig. 20a), and on the bottom
of the rectangle the equal ordinates CC’ and DD’ represent the
intensity of pressure whs.

BB’ and CC’ (Fig. 20b) represent, to a reduced scale, the inten-
sities of pressure at B and C. BB’ and CC” are laid off equal

AN

c

(a)

FiG. 20.

to 6 BB’ and 6CC’, respectively, and therefore represent the areas
ABB'A’ and DCC’'D’. The total pressure acting on the surface
ABCD is therefore represented by the area of the pressure diagram
BCC”B" as it is similarly represented by the pressure volume
ABCDA'B'C’D'. Also the resultant pressure on the surface acts
through the center of gravity of the pressure area BCC"” B’ just
as it acts through the center of gravity of the pressure volume
ABCDA’B'C'D'.

The trapezoid BCC”B" may be divided into the rectangle
BB"EC and the triangle B"’C"'E, the locations of whose centers of
gravity are known. By taking moments of each of these pressure
areas about C”’C and dividing the sum of these moments by the
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area of the trapezoid, the distance of the center of pressure from
C is determined. Thus

BB"=wX5X6
and

CC" =w(5+2V'3) X6,
therefore

C"E=wX2V3X6.
Taking moments about C"'C,

4XWX5X6X 2+ XwX2VIX6X 4
4 X HwX5X6+w(5+2V3) X6]
=1.83 ft.

Example (c), page 29, can also be solved by taking moments
about BB" as follows:

Y=

4F =4X62.4X5X6X2+4X62.4X2V3X6X
from which
F=5470 lbs.

For areas having a variable width, OB"’C" is not a straight
line and the center of gravity of the pressure area is not so easily
located. For such areas it will probably be easier to use the
analytical method described in Art. 26.

28. Position of Center of Pressure with Respect to Center of
Gravity.—If the intensity of pressure varies over any surface, the
center of pressure is below the center of gravity. Consider the
equation (see Art. 26),

*’=y'+';—f. N ¢ § §)

Sincelg: must always be positive, § must be greater than y/'.

This may also be seen from Fig. 20. The center of pressure
on ABCD is the normal projection on that plane of the center of
gravity of the pressure volume ABCDA’B'C’'D’. Evidently this
projection must fall below the center of gravity of ABCD since
it would fall at the center of gravity if the intensity of pressure
on the surface were uniform, in which case the pressure volume
would be ABCDA'B'EF.
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It also appears from the above discussion and from a study of
Fig. 20 that for any area the greater its depth below the surface
of the liquid the more nearly will the center of pressure approach
the center of gravity. The two coincide at an infinite depth.

In two cases the intensity of pressure is constant over the area
and hence the center of pressure coincides with the center of
gravity: Co

(a) When the surface is horizontal.

(b) When both sides of the area are completely submerged in
liquids of the same density. As an illustration consider the gate
AB (Fig. 21). Water stands h; feet above the top of the gate on
one side and h; feet above it on the other side. The distribution
of pressure on the left is
represented by the trapezoid
ABMN and on the right by
the trapezoid AHKB. The
triangle GED is similar to
CFG and equal to CE'P by
construction. The trapezoid
of pressure AHKB is therefore
. balanced by the trapezoid
ONML. The resultant in-
tensity of pressure on the
surface is therefore constant,

Fic. 21. as represented by the rect-

angle OABL, and the center

of pressure must coincide with the center of gravity of the

surface. This is true regardless of the shape of the surface.

The resultant intensity of pressure equals wh, where h is the
difference in elevation of water surfaces.

In this latter case it should be observed that it is the center
of the resultant pressure that coincides with the center of gravity
of the gate, since the center of gravity of either of the trap-
ezoidal areas of pressure, considered alone, falls below the center
of gravity of the gate. _

29. Horizontal and Vertical Components of Pressure on any
Surface.—It may be convenient to deal with the horizontal and
vertical components of the pressure acting on a surface rather
than with the resultant pressure.

Consider, for example, the water pressure acting on the curved
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face, AB, of the dam shown in section in Fig. 22. The dam may
have any length normal to the
plane of the paper. Choosing
the coordinate axes as shown,
let BF represent the trace of
a vertical plane normal to the
XY plane. Consider the equi-
librium of the volume of liquid
whose cross-section, as shown
in the figure, is ABF and
whose ends are parallel with
the XY plane and separated
by a distance equal to the
length of the dam. Since this
volume of liquid is assumed to be in equilibrium, £X=0 and
ZY=0.

The only forces that have any components parallel with the
X-axis are the X-components of the normal pressures acting on the
surface AB and the normal pressure on the vertical plan BF.
Since BF is the projection of the face AB on a vertical plane nor-
mal to the X-axis, it follows that the resultant of the X-com-
ponents of the pressures on AB, or P;, equals the normal pressure
on the projection of AB on a vertical plane normal to ihe X-axis.
As the demonstration holds true independently of the manner in
which the X-axis is chosen, it may be stated in general that the
component, along any horizontal axis, of the pressure on any area
is equal to the normal pressure on that vertical projection of the
area which is normal to the chosen axis.

In a similar manner consider the vertical forces acting on the
volume of liquid whose cross-section is ABF (Fig. 22). The only
vertical forces are the force of gravity, or the weight of the liquid,
and the vertical components of the pressures on the surface AB,
which forces must therefore be equal in magnitude. In other
words, the vertical component of the pressure on any surface is
equal to the weight of that volume of the liquid extending verti-
cally from the surface to the free surface of the liquid. If the pres-
sure were acting upward on the surface, its magnitude, as will be
shown later (Art. 30), would be equal to the weight of that volume
of the liquid that would extend from the surface to the free surface
of the liquid. The pressures considered in this article are relative

"

o - -

Fia. 22.
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pressures, since obviously atmospheric pressure is acting on both
sides of the dam and the resultant effect is zero.

Ezamples: (a) What will
be the resultant pressure on
the base BC of the masonry
dam subjected to water pres-
sure, as shown in Fig. 23, and
where will this resultant in-
tersect the base?

The following numerical
values are given. Area of
section ABCD=600 sq. ft.
Area of water section OAB
=200 sq. ft. Weight of ma-
sonry =150 lbs. per cubic foot.
Linear dimensions are shown
in figure.

A section of dam 1 ft. long
. Ry R will be considered to be in equi-
Fia. 23. i librium under the action of the

following forces:

W =the total weight of the section, acting through the center of
gravity of the cross-section ABCD;
P =resultant hydrostatic pressure acting on the face AB;
R =reaction between the earth and the base, BC, of the dam.
This reaction must necessarily be equal, opposite and colinear
with the resultant of W and P.
Since the dam is in equilibrium when subjected to the above

forces, the fundamental principles of equilibrium may be applied—
that is,

2X=0,2Y=0 and ZM=0.
For ZX=0; R.=P: and for the data given
P;=62.4X4X45=63,200 lbs.
For 2Y=0; R,=Py+W and for the data given
P,=200X62.4=12,480 lbs.
W =600 150 =90,000 lbs.
R, =12,480+90,000 = 102,480 lbs.
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The total resultant pressure on the base is

R ="V63,2002+102,480% = 122,500 Ibs.

For ZM =0, taking moments about an axis through C, normal to
the plane of the section, X being the distance from C at which the
resultant, B, intersects the base of the dam,

R,X+48P,—25P,— 18W =0.
Substituting the numerical values of Ry, P:, W and P,
-102,480X 463,200 X 4% — 12,480 X 25—90,000X 18 =0

and reducing
X =8.6 ft.

Thus the resultant pressure of 122,500 lbs. per linear foot of dam
intersects the base 8.6 ft. from the toe of the dam.

(b) Determine the tensile stress in the walls of a 24-in. pipe
carrying water under a head of 100 ft.

In a case like this where the head is relatively large compared
to the diameter of the pipe, it is customary to consider that the
intensity of pressure is uniform throughout the pipe.

A cross-section of the pipe is shown in Fig. 24. Consider a
semicircular segment, AB, of unit length, held in equilibrium by
the two forces T. Evidently

T is the tensile stress in the -———— T
wall of the pipe, and if the T

intensity of pressure is N

assumed to be constant, T I

is constant at all points in ._Y _ Tt

the section. The sum of 8

the horizontal components
of the normal pressures acting on the semicircular segment is equal
to the normal pressure on the vertical projection of this segment
(Art. 29). Calling this normal pressure P, since ZH =0, '

F1c. 24. -

2T =P=whA =62.4X100X2=12,480 lbs.
and
T=6,240 Ibs.
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The required thickness of a steel pipe, usihg a safe working
stress of 16,000 lbs. per square inch is

6240 .
t—m—00325 1n.
or a little more than 4 in.
PROBLEMS

1. A vertical rectangular gate is 4 ft. wide and 6 ft. high. Its upper edge
is horizontal and on the water surface. What is the total pressure on the
gate and where i8 the center of pressure?

2. Solve Problem 1 if the water surface is 5 ft. above the top of the gate,
other conditions remaining the same.

8. Solve Problem 2 if the plane of the gate makes an angle of 30° with the
vertical, other conditions remaining unchanged.

4. A cubical box, 24 in. on each edge, has its base horizontal and is half
filled with water. One of the sides is held in position by means of four screws,
one at each corner. Find the tension in each screw due to the water pressure.

5. A vertical, triangular gate has a horizontal base 4 ft. long, 3 ft. below
the vertex and 5 ft. below the water surface. What is the total pressure on
the gate and where is the center of pressure?

8. A vertical, triangular gate has a horizontal base 3 ft. long and 2 ft.
below the water surface. The vertex of the gate is 4 ft. below the base.
What force normal to the gate must be applied at its vertex to open.the gate?

7. A triangular gate having a horizontal base 4 ft. long and an altitude
of 6 ft. is inclined 45° from the vertical with the vertex pointing upward.
The base of the gate is 8 ft. below the water surface. What normal force
must be applied at the vertex of the gate to open it?

8. A cylindrical tank, having a vertical axis, is 6 ft. in diameter and
10 ft. high. Its sides are held in position by means of two steel hoops, one
at the top and one at the bottom. What is
the tensile stress in each hoop when the
tank is filled with water?

9. What is the greatest height, h, to
which the water can rise without causing the
dam shown in Fig. 25 to collapse? Assume
b to be so great that water will not flow over
the top of the dam.

10. If b in the figure is 20 ft., find the
least value of 2 at which the dam will
collapse.

11. A vertical, triangular gate has a
horizontal base 8 ft. long and 6 ft. below
the water surface. Its vertex is 2 ft. above the water surface. What normal
force must be applied at the vertex to open the gate?

12. A masonry dam of trapezoidal cross-section, with one face vertical,
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has a thickness of 2 ft. at the top and 10 ft. at the bottom. It is 22 ft. high
and has a horizontal base. The vertical face is subjected to water pressure,
the water standing 15 ft. above the base. The weight of the masonry is
150 lbs. per cubic foot. Where will the resultant pressure intersect the base?

13. In Problem 12 what would be the depth of water when the resultant
pressure intersects the base at the outer edge of the middle third, or 1% ft.
from the middle of the base?

14. A vertical triangular surface has a horizontal base of 4 ft. and an
altitude of 9 ft., the vertex being below the base. If the center of pressure is
6 in. below the center of gravity, how far is the base below the water surface?

15. Water stands 40 ft. above the top of a vertical gate which is 6 ft.
square and weighs 3000 Ibs. What vertical lift will be required to open the
gate if the coefficient of friction between the gate and the guides is 0.3?

16. On one side, water stands level with the top of a vertical, rectangular
gate 4 ft. wide and 6 ft. high, hinged at the top; on the other side water
stands 3 ft. below the top. What force applied at the bottom of the gate, at
an angle of 45° with the vertical, is required to open the gate?

17. A vertical, trapezoidal gate in the face of a dam has a horizontal
base 8 ft. below the water surface. The gate has a width of 6 ft. at the bottom
and 3 ft. at the top, and is 4 ft. high. Determine the total pressure on the
gate and the distance from the water surface to the center of pressure.

18. Determine the total pressure and the position of the center of pressure
on a vertical, circular surface 3 ft. in diameter,. the center of which is 4 ft.
below the water surface.

19. A 6-in. pipe line in which there is a 90° bend contains water under a
gage pressure of 450 Ibs. per square inch. Assuming that the pressure is
uniform throughout the pipe and that the water is not in motion, find the total
longitudinal stress in joints at either end of the bend.



CHAPTER 1V
IMMERSED AND FLOATING BODIES

80. Principle of Archimedes.—Any body immersed in a liquid
is subjected to a buoyant force equal to the weight of liquid dis-
placed. This is known as the principle of Archimedes. It may be
proved in the following manner.

The submerged body ABCD (Fig. 26) is referred to the coor-
dinate axes X, Y and Z. Consider the small horizontal prism
aiaz, parallel to the X-axis, to have a cross-sectional area dA.
The X-component of the normal force acting on a; must be equal

and opposite Lo the same force

acting on az, each being equal

ey~  to wh dA. There is, therefore,

hn no tendency for this prism to

58 [y move in a direction parallel to

) )‘} the X-axis. Since the same

reasoning may be applied to

0 JL every other' prism parallel to

i aaz it follows that there is no

tendency for the body as a

whole to move in this direc-

tion. The same reasoning ap-

plies to movement parallel to

the Z-axis or to any other axis

in a horizontal plane. If, therefore, there is any tendency for the
body to move it must be in a vertical direction.

Consider now the Y-components of the hydrostatic pressures
acting on the ends of any vertical prism bb2 having a cross-
sectional area, dA, so small that the intensity of pressure on either
end of the prism may be considered constant. The resultant of
these pressures will be the difference betweendP;, the vertical com-
ponent of the normal pressure at b; equal to wh; dA, acting down-
ward and dP;, the corresponding force acting atbe, equal towhs d4,

38
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Fia. 26.
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acting upward. The resultant pressure will be upward and equal
to w(he—h1) dA; but (h2—hy) dA is the volume of the elementary
prism which, multiplied by w, gives the weight of the displaced
liquid. Since the entire body, ABCD, is made up of ah infinite
number of such prisms, it follows that the resultant hydrostatic
pressure on the body will be a buoyant force equal in magnitude
to the weight of the displaced liquid.

If the weight of the body is greater than the buoyant force
of the liquid the body will sink. On the other hand, if the weight
of the body is less than the buoyant force, the body will float
on the surface, displacing a volume of liquid having a weight equal
to that of the body.

31. Center of Buoyancy.—A BCD (Fig. 27) represents a floating
body. From the principles of the preceding article, the buoyant
force acting on any elementary area of the 8

submerged surface must be equal to the - ‘_ ¥
weight of the vertical prism of displaced
liquid directly above it. Since the weight N

of each prism is directly proportional to its Fia. 27
volume, the center of gravity of all these Y
buoyant forces, or the center of buoyancy, must coincide with the -
center of gravity of the displaced liquid.

32. Stability of Floating Bodies.—Any floating body is sub-
jected to two systems of parallel forces; the downward force of
gravity acting on each of the particles that goes to make up the
body and the buoyant force of the liquid acting upward on the
various elements of the submerged surface.

In order that the body may be in equilibrium the resultants
of these two systems of forces must be colinear, equal and oppo-
site. Hence the center of buoyancy and the center of gravity
of the floating body must lie in the same vertical line.

Fig. 28 (a) shows the cross-section of a ship floating in an
upright position, the axis of symmetry being vertical. For this
position the center of buoyancy lies on the axis of symmetry at
By which is the center of gravity of the area ACL. The center of
gravity of the ship is assumed to be at G. If, from any cause, such
as wind or wave action, the ship is made to heel through an angle
0, as shown in Fig. 28 (b), the center of gravity of the ship and
-cargo remaining unchanged, the center of buoyancy will shift
to a new position, B, which is the center of gravity of the area
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A'C'L. The buoyant force F, acting upward through B, and the
weight of the ship W, acting downward through G, constitute a
couple which resists further overturning and tends to restore the
ship to its original upright position. In all cases, if the vertical
line through the center of buoyancy intersects the inclined axis
of symmetry at a point M above the center of gravity, the two
forces F and W must produce a righting moment. If, however,
M lies below G an overturning moment is produced. ' The point M
is known as the metacenter and its distance, GM, from the center
of gravity of the ship, is termed the metacentric height. The value
of the metacentric height is a measure of the stability of the ship.

For angles of inclination not greater than 10° or 15° the

~
~~o
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-~

(a) | (3
Fia. 28.

position of M does not change materially, and for small angles of
heel the metacentric height may be considered constant. . For
greater inclinations, however, the metacentric height varies to a
greater extent with the angle of heel.
~ 83. Determination of Metacentric Height.—Fig. 29 illus-
trates a ship having & displacement volume, V. When the ship is
tilted through the angle 6 the wedge AOA’ emerges from the
water while the wedge C’OC is immersed. If the sides AA’ and
C'C are parallel, these wedges must be similar and of equal volume,
v, since the same volume of water is displaced by the ship whether
in an inclined or upright position. The wedges therefore will
have the same length and the water lines AC and A’C’ must inter-
sect on the axis of symmetry at O.

When the ship floats in an upright posmon a buoyant force
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F, equal to wy, acts upward through K, the center of gravity of
the wedge AOA’. In the inclined position this force no longer
acts, but an equal force F’ acts at K’, the center of gravity of the
wedge C'OC. It may be considered that a downward force F”,
equal to F, has been introduced, the resultant of F”” and F being
zero. A righting couple has therefore been introduced equal to
wvL, L being the horizontal distance between the centers of gravity
of the wedges.

Because of the shifting of the force F from K to K’ the line of

we

|
M

Fia. 29.

action of the buoyant force W acting on the entire ship is shifted
from Bg to B, a horizontal distance S such that

wVS=weL. . . . . . . . (1)

Consider now a small vertical prism of the wedge C'OC, at a
distance z from O, having a cross-sectional area dA. The buoyant
force produced by this immersed prism is wz tan § dA, and the
moment of this force about O is wa? tan 6 dA.

The sum of all of these moments for both wedges must be equal
to wvL or

w tan 0_[:02 dA=wvL=wVS.

But S=M By sin 6, and for small angles, since the sine is very nearly
equal to the tangent,

f2 dA =V (MBo) = V(GM+GBy),
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and since f 22dA is the moment of inertia, I, of the water-line
section about the longitudinal axis through O,

G’M=VI:hG'Bo, R )

the sign in the last expression being positive if M falls below G
and negative if above.

Ezxample.—Find the me-
tacentric height of the rect-
angular scow shown in Fig.
30.

The scow is 40 ft. long,
20 ft. wide and 8 ft. deep.
It has a draft of 5 ft. when

Fia. 30, floating in an upright posi-

tion. The center of gravity

of the scow is on the axis of symmetry, 1 ft. above the water
surface. The angle of heel is 10°.

The problem may be solved by substituting values in formula
(2), but the following method may be used conveniently for shapes
such that the center of buoyancy can be readily found.

Since the center of buoyancy, B, is at the center of gravity of
HA'C'F, its position may be found by taking moments about the
axes HF and EF. Before taking moments the distances KC’
and KF must be determined.

KC'=20X tan 10°=3.52,

KF=5- 32ﬁ =3.24.
Taking moments about HF
(6x20)BL = (3.24x20x 2 2) 4232 ox20(3. 2445 2),
BL'=2.60 ft.
Taking moments about EF

(5X20)BN = (3.24><20><2—£> + (?—fgxzox%),

BN =8.83 ft.
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The distance of B from the inclined axis of symmetry is
BB'=10—8.83=1.17 ft.
From similar triangles

MB _A'K . 1.17X20
BE-CK & MB=—735—

The metacentric height is
GM=MB'+B'L—-GL
=6.65+2.60—6=3.25 ft.
The righting moment is
Wz=5X20X40X 62.4X3.25 sin 10°
= 140,900 ft.-1bs.

=6.65 ft.

PROBLEMS

1. A rectangular scow 15 ft. by 32 ft., having vertical sides, weighs 40
tons (80,000 Ibs.). What is its draft?

2. If a rectangular scow 18 ft. by 40 ft. has a draft of 5 ft. what is its
weight?

8. A cubic foot of ice (sp. gr.=0.90) floats freely in a vessel containing
water whose temperature is 32° F. When the ice melts, will the water level
in the vessel rise, lower or remain stationary? Explain why.

4. A ship of 4000 tons displacement floats with its axis of symmetry
vertical when a weight of 50 tons is midship. Moving the weight 10 ft. towards
one side of the deck causes a plumb bob, suspended at the end of a string 12 ft.
long, to move 9 in. Find the metacentric height.

5. A rectangular scow 30 ft. wide, 50 ft. long, and 12 ft. high has a draft
of 8 ft. Its center of gravity is 9 ft. above the bottom of the scow. If the
scow is tilted until one side is just submerged, determine:

(a) The position of the center of buoyancy.
(b) The metacentric height.
(¢) The righting couple, or the overturning couple.

6. In Problem 5, what would be the height of the scow (all other data
remaining unchanged) if, with one side just submerged, the scow would be
in unstable equilibrium?

7. A box, 1 ft. square and 6 ft. high, has its upper end closed and lower
end open. By submerging it vertically with the open end down what is the
greatest weight the box can sustain without sinking?

8. In Problem 7, what weight would hold the box in equilibrium with the
upper end submerged 10 ft. below the surface?

9. A solid block of wood (sp. gr.=0.6) in the shape of a right cone has a
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base whose diameter is 12 in. and an altitude of 18 in. In what position
will this block float in water when it is in stable equilibrium?

10. A solid block of wood (sp. gr.=0.6) in the shape of a right cylinder
has a diameter of 12 in. and a length of 15 in. Determine the position in
which this block will float in water when in stable equilibrium.



CHAPTER V
RELATIVE EQUILIBRIUM OF LIQUIDS

34. Relative Equilibrium Defined.—In the preceding chapters
liquids have been assumed to be in equilibrium and at rest with
respect both to the earth and to the containing vessel. The
present chapter treats of the condition where every particle of a
liquid is at rest with respect to every other particle and to the con-
taining vessel, but the whole mass, including the vessel, has a
uniformly accelerated motion with respect to the earth. The
liquid is then in equilibrium and at rest with respect to the vessel,
but it is neither in equilibrium nor at rest with respect to the
earth. In this condition a liquid is said to be in relative equilibrium.
Since there is no motion of the liquid with respect to the vessel
and no movement between the water particles themselves there
can be no friction.

Hydrokinetics, which is treated in the following chapters,
deals with the condition in which water particles are in motion
with respect to the earth and also with respect to each other.
In this case the retarding effects of friction must be considered.

Relative equilibrium may be considered as an intermediate
state between hydrostatics and hydrokinetics.
Two cases of relative equilibrium will be dis-
cussed.

36. Vessel Moving with Constant Linear
Acceleration.—If a vessel partly filled with
any liquid moves horizontally along a straight
line with a constant acceleration, j, the
surface of the liquid will assume an angle 6
with the horizontal as shown in Fig. 31. To
determine the value of 6 for any value of 7,
consider the forces acting on a small mass of Fig. 31.
liquid, M, at any point O on the surface.

This mass is moving with a constant horizontal acceleration, j,
and the force producing the acceleration is the resultant of all
45
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the other forces acting upon the mass. These forces are the
force of gravity, W, acting vertically downward and the pres-
sure of all the contiguous particles of the liquid. The resultant,
F, of these forces must be normal to the free surface AB. Since
force equals mass times acceleration,

P=M‘=%, )
and from the figure
P=Wtang.. . . . . . . . (2
Solving these two equations simultaneously,
J
tanf==, . . . . . . . . . . @3
an p 3)

which gives the slope that the surface, AB, will assume for any
constant acceleration of the vessel.

Since O was assumed to be anywhere on the surface and the
values of j and g are the same for all points, it follows that tan 8
is constant at all points on the surface or, in other words, AB
is a straight line.

The same value of 6 will hold for a vessel moving to the right
with a positive acceleration as for a vessel moving to the left
with a negative acceleration or a retardation.

To determine the intensity of pressure at any point b, at a
depth h below the free surface, consider the vertical forces acting
on a vertical prism ab (Fig. 31). Since there is no acceleration
vertically the only forces acting are atmospheric pressure at q,
gravity, and the upward pressure on the base of the prism at b.
Hence, if the cross-sectional area is d4,

ppdA=whdA+p,dA, . . . . . . (4
or '
p=wh+ps, . . . . . . . . %)
or, neglecting atmospheric pressure which acts throughout,
m=wh. . . . . . . .. .. (6)

_ Therefore, in a body of liquid moving with a horizontal accelera-
tion the relative pressure at any point is that due to the head of
liquid directly over the point, as in hydrostatics. In this case,
however, it is evident that all points of equal pressure lie in an
inclined plane parallel with the surface of the liquid.



VESSEL ROTATING ABOUT A VERTICAL AXES 47

In equation (3) if j were zero, tan § would equal zero; or, in
other words, if the vessel were moving with a constant velocity
the surface of the liquid would be horizontal. Also if the accelera-
tion were vertically upward, the surface would obviously be
horizontal.

To determine the relative pressure at any point, b, in a vessel
with an acceleration upward, consider the
forces acting on a vertical prism of liquid ab
of height h and cross-sectional area dA (Fig.
32). The force, P, producing the acceleration
is the resultant of all the forces acting on A
the prism, consisting of gravity equal to
wh dA, acting downward and the static pres- [ b
sure on the lower end of the filament at i
b, equal to ptdA, acting upward. There-
fore

P=pydA —wh dA =Mj=wh-Td4]';

From which )
p.=wh+wh§. S (6

Y This shows that the intensity of
pressure at any point within a
liquid contained in a vessel hav-
ing an upward acceleration, j, is
\ s ,r ) greater than the static pressure

by an amount equal to wh‘;:.

3
)
b
}
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{ c Evidently, if the acceleration
:Ih_ 0 Ay A ., were downward, the sign of the
Y = last term in the above expression
would become negative, and if
j=g, ;»=0. In other words, if
a vessel containing any liquid
falls freely in a vacuum, so as
not to be retarded by air friction,
° x the pressure will be zero at all
Fic. 33. points throughout the vessel.

36. Vessel Rotating about a
Vertical Axis.—When the vessel shown in Fig. 33 is at rest, the
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surface of the liquid is horizontal and at mn. m'b'n’ represents
the form of surface resulting from rotating the vessel with a con-
stant angular velocity w radians per second about its vertical
axis OY. .

Consider the forces acting on a small mass of liquid, M, at a,
distant r from the axis OY.

Since this mass has a uniform circular motion it is subjected to
a centripetal force,

C=Mw?, . . . . . . . . (8

which force produces an acceleration directed toward the center
of rotation and is the resultant of all the other forces acting on the
mass. These other forces are the force of gravity, W =My,
acting vertically downward, and the pressure exerted by the
adjacent particles of the liquid. The resultant, F, of this liquid
pressure must be normal to the free surface of the liquid at a. .

Designating by 6 the angle between the tangent at a and the
horizontal,

or

which, when integrated becomes,

w’r?
_W...........(Q)

The constant of integration equals zero, since when'v equals zero
h also equals zero.

Since h and r are the only variables this is the equation of a
parabola, and the liquid surface is a paraboloid of revolution
about the Y-axis. As the volume of a paraboloid is equal to one-
half that of the circumscribed cylinder and since the volume of
liquid within the vessel has not been changed,

bb=3b"n’ =nn'.

The linear velocity at a is
v=wr. . . . . . . . . (10)
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Substituting v for wr in equation (9)

v2
h—2—g. B 5 )
Expressed in words, this means that any point on the surface of the
liquid will rise above the elevation of greatest depression a height
equal to the velocity head (see Art. 43) at that point.

To determine the relative pressure at any point c at a depth A’
vertically below the surface at ¢’ consider the vertical forces acting
on the prism c¢/, having a cross-sectional area dA. As this prism
has no vertical acceleration, Zy=0 and

pdA =wh’ dA
or
pe=wh’. . . . . . ... (12

That is, the relative pressure at any point is that due to the
head of liquid directly over the point, as in hydrostatics. There-
fore the distribution of pressure on the bottom of the vessel is
represented graphically by the vertical ordinates to the curve
m’b'n’. Tt also follows that the total pressure on the sides of the
vessel is the same as though the vessel were filled to the level
m'n’ and were not rotating.

PROBLEMS

1. A vessel containing water moves horizontally along a straight line with
a constant velocity of 10 ft. per second. What is the form of its water surface?

2. A vessel partly filled with water moves horizontally with a constant,
linear acceleration of 10 ft. per second per second. What is the form of its
water surface?

3. An open cylindrical vessel, 2 ft. in diameter, 3 ft. high and two-thirds
filled with water, rotates about its vertical axis with a constant speed of
90 RP.M. Determine:

(a) The depth of water at the center of the vessel.
(b) The total pressure on the cylindrical walls.
(c) The total pressure on the bottom of the vessel.

4. In Problem 3, what is the greatest speed in revolutions per minute
that the vessel can have without causing any water to spill over the sides?

6. In Problem 3, what speed in revolutions per minute must the vessel
have in order that the depth at the center will be zero?

6. In Problem 3, what speed in revolutions per minute must the vessel
have in order that there may be no water within 6 in. of the vertical axis?
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7. If a closed cylindrical vessel, 2 ft. in diameter, 3 ft. high and completely
filled with water, rotates about its vertical axis with a speed of 240 R.P.M .,
determine the intensity of pressure at the following points:

(a) At the circumference, just under the cover.
(b) At the axis, just under the cover.

(¢) At the circumference, on the bottom.

(d) At the axis, on the bottom,




CHAPTER VI
PRINCIPLES OF HYDROKINETICS

37. Introductory.—The principles relating to the behavior of
water or other liquids at rest are based upon certain definite laws
which hold rigidly in practice. In solving problems involving
these principles it is possible to proceed by purely rational methods,
the results obtained being free from any doubt or ambiguity.
Calculations are based upon a few natural principles which are
universally true and simple enough to permit of easy application.
In all problems ordinarily encountered in hydrostatics, after the
unit weight of the liquid has been determined, no other experi-
mental data are required.

A liquid in motion, however, presents an entirely different
condition. Though the motion undoubtedly takes place in
accordance with fixed laws, the nature of these laws and the
influence of the surrounding conditions upon them are very
complex and probably incapable of being expressed in any exact
mathematical form.

Friction and viscosity affect the laws of hydrokinetics in a
varying degree for different liquids. Since water is the most
common liquid with which the engineer has to deal and since, as a
result, more is known about the laws relating to the flow of this
liquid, the following treatise on hydrokinetics applies only to
water. The fundamental principles discussed hold true for all
liquids, but the working formulas would necessarily have to be
modified for each different kind of liquid.

A clearer conception of the underlying principles of hydro-
kinetics is made possible by the assumption of certain ideal
conditions. This also permits of the establishment of a few
basic laws which may be expressed as fundamental formulas.
These assumed conditions, however, vary widely from those which
actually exist and working formulas based upon them must invari-
ably be modified by experimental coefficients.

61
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A formula with its empirical coefficients included, which
requires only that numerical values be affixed to the coefficients
to make it adaptable to the solution of problems, is referred to as
a base formula. Many formulas used in hydrokinetics differ so
widely from the fundamental form that they have little if any
claim to a rational basis.

During the last two centuries many hundreds of experiments
on flowing water have been performed. These experiments have
covered a wide range of conditions, and the data obtained from
them make possible the modern science of hydrokinetics.

38. Friction.—There can be no motion between two substances
in contact without friction. This principle applies to liquids and
gases as well as solids. Water flowing in any conduit encounters
friction with the surfaces with which it comes in contact. There
is also friction between the moving particles of water themselves,
commonly called viscosity (Art. 6). The free surface of water
flowing in an open channel encounters the resistance of the air
and also the greater resistance of the surface skin which results
from surface tension (Art. 7).

The amount of frictional resistance offered by any surface
increases with the degree of roughness of the surface. The
resistance which results from viscosity decreases as the tempera-
ture of the water increases. The influence of friction and viscosity
on the flow of water must be determined experimentally.

To overcome frictional resistance requires an expenditure of
energy. The expended energy is transformed into heat. After
being so transformed it cannot, through the ordinary processes
. of nature, be reconverted into any of the useful forms of energy
contained in flowing water and is therefore often referred to as
lost energy. .

39. Discharge.—The rate of flow or the volume of water passing
a cross-section of a stream in unit time is called the discharge.
The symbol Q will be used to designate the discharge in cubic
feet per second. Other units of discharge, such as cubic feet
per minute, gallons per minute or gallons per day are sometimes
employed for special purposes.

If a uniform velocity at all points in the cross-section of a
stream were possible there would be passing any cross-section every
second a prism of water having a base equal to the cross-sectional
area of the stream and a length equal to the velocity. Because,




STEADY FLOW AND UNIFORM FLOW 53

however, of ‘the varying effects of friction and viscosity, the
different filaments of water move with different velocities. For
this reason it is common in hydraulics to deal with mean velocities.
If v is the mean velocity in feet per second past any cross-section,
and a is the cross-sectional area in square feet,

Q=av . . . . . . . . @
Q

v="1,
a

and

These simple formulas are of fundamental importance.

40. Steady Flow and Uniform Flow.—If the same quantity of
water passes any cross-section of a stream during equal successive
intervals of time the flow is said to be steady. If the quantity of
water passing any cross-section changes during successive intervals
of time the flow is said to be unsteady. If not otherwise stated,
the condition of steady flow will be assumed. The fundamental
principles and formulas based upon steady flow do not generally
hold for unsteady flow. Problems most commonly encountered
in practice deal only with steady flow.

If in any reach of a stream the velocity at every cross-section
is the same at any instant the flow is said to be uniform. This
condition requires a stream of uniform cross-section. If the cross-
section is not uniform throughout the reach, in the portions of the
reach where velocity changes occur, the flow is non-uniform.

Thus, uniform flow implies instantaneous similarity of condi-
tions at successive cross-sections, whereas steady flow involves
permanency of conditions at any particular cross-section.

41. Continuity of Discharge.—When, at any instant, the dis-
charge is the same past every cross-section, it is said to be continu-
ous, or there is continuity of discharge. The term continuity of flow
is also used to express this condition. Letting @, @ and v represent,
respectively, discharge, area and mean velocity with similar sub-
scripts applying to the same cross-section, continuity of discharge
exists when

. Q=alvl=a202=a303, etc. . . . . . (3)

Continuity of discharge may be illustrated by assuming water

to be turned into a canal. At first there will be a greater volume
of water flowing near the entrance than at sections farther down.
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Under such conditions the discharge is not continuous. Ulti-
mately, however, if the supply of water is constant and assuming
no losses from seepage or evaporation, there will be the same quan-
tity of water flowing past all sections of the canal, and the condi-
tion of continuity of discharge will exist in the entire canal regard-
less of whether or not all reaches of the canal have the same cross-
sectional area. In a pipe flowing full, even though the pipe is
made up of several diameters, the discharge is continuous.

42. Stream Line and Turbulent Motion.—Flowing water is
said to have stream-line motion if each particle follows the same
path as was followed by every preceding particle that occupied the
same position. If stream-line motion exists within a conduit
having parallel sides the paths of the water particles are parallel
to the sides of the conduit and to each other.

Water flows with stream-line motion only at very low velocities,

Fra. 34.

excepting in very small pipes where such motion may exist at quite
high velocities (Art. 90). Under practically all conditions encoun-
tered in the field of engineering, the motion is turbulent, the water
particles moving without any regularity and not in accordance
with any known laws. In Fig. 34 (a) and (b) represent, respect-
ively, stream-line and turbulent motion.

Friction and viscosity affect the flow of water whether the
motion be stream line or turbulent, but the effects produced in the
two cases are in accordance with different laws (Art. 90).

43. Energy and Head.—Since the principles of energy are
applied in the derivation of fundamental hydraulic formulas, an
explanation of such principles as will be used is here introduced.

Energy is defined as ability to do work. Where the English
system of units is employed, both energy and work are measured
in foot-pounds. The two forms of energy commonly recognized
are kinetic energy and potential energy.

. Kinetic energy is the ability of a mass to do work by virtue of its
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velocity. Where v is the velocity in feet per second and M, the
mass in gravitational units, is equal to W/g, the kinetic energy of
any mass is expressed by the equation

M _We?

KE="=2r - . ... @

which reduces to i for a weight of unity. The expression 0219

29

is of the form

feet per second Xfeet per second
=feet,
feet per second per second

and it therefore represents a linear quantity expressed in feet.
It is the distance which a body must fall in a vacuum to acquire
the velocity v. When applied to flowing water it is called the
velocity head. Although representing a linear quantity, the
velocity head is directly proportional to the kinetic energy of any
mass having a velocity v and is equal to the kinetic energy of
one pound of any substance moving with a velocity v.

Potential energy is latent or potential ability to do work.
Water manifests this ability in two ways:

(a) By virtue of its position or elevation with respect to some
arbitrarily. selected horizontal datum plane, considered in con-
nection with the action of gravity. This may be called energy
of position, energy of elevation or gravitational energy.

(b) By virtue of pressure produced by the action of gravity,
or by the application of some external force, on the water. This
may be called pressure energy.

Energy of position may be explained by considering a mass
having a weight of W pounds whose elevation above any horizontal
datum plane is h feet. With respect to this plane the mass
has Wh foot-pounds of energy. A mass weighing one pound
will have h foot-pounds of energy. If a mass weighing one pound
is placed h feet below the datum plane, its energy with respect
to the plane will be —h foot-pounds, being negative because this
amount of energy will have to be exerted upon the mass to raise
it to the datum plane against the action of gravity. Here again
the expression for energy, in this case h, represents a linear quan-
tity which is the elevation head of the mass, but it should be kept
clearly in mind that it is also the energy expressed in foot-pounds
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contained in one pound of water by virtue of its position with
respect to the datum plane.

It thus appears that the amount of energy of position possessed
by a mass depends upon the elevation of the datum plane. In
any particular problem, however, all masses should be referred
to the same plane. This gives the relative amounts of energy
contained in different masses or the relative amounts of energy
in the same mass in different positions, which is all that is usually
required.

The action of pressure energy is illustrated by the piston and

cylinder arrangement shown

Rt in Fig. 35, which is operated
—_— <«——> entirely by water under a gage

pressure of p pounds per

square foot. The area of the

piston is A square feet. The
cylinder is supplied with water through the valve B and may be
emptied through the valve S.

At the beginning of the stroke the piston is at CD, the valve
S is closed and R is open. Water enters the cylinder and slowly
drives the piston to the right against the force P. Neglecting
friction, the amount of work done on the piston while moving
through the distance [ feet is Pl=pAl foot-pounds. If R is now
closed and S opened, again neglecting friction, the piston may be
moved back to its original position without any work being done
upon it. The quantity of water required to do the work, pAl foot-
pounds, is Al cubic feet and its weight is wAl pounds. The amount
of work done per pound of water is therefore

PpAl_p
wAl w

Since this work is done entirely at the expense of pressure energy
and while the gage pressure is being reduced from p to zero, the

Fia. 35.

foot-pounds.

amount of pressure energy per pound of water is i": foot-pounds.

It has been shown in Art. 17 that 5 represents pressure head

or a linear quantity. If pressure head is expressed in feet of
water column, it will also represent foot-pounds of energy per
pound of water as has been shown to be the case for velocity
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head and elevation head. There are other forms of energy, such
as heat energy and electrical energy, which have no direct bearing
on the laws governing flowing water.

The three forms of energy which water may have are illus-
trated in Fig. 36. At A water is moving with a velocity v.
The kinetic energy of a pound of water at A is v3/2g, the pressure
energy is

P_y

w
and the energy of position referred to the datum plane MN is 2.
Thus, with respect to the plane MN the total energy per pound of
waler at any point A, expressed in foot-pounds, is

+£+z........(5)

Fia. 36. Fia. 37.

44, Bernoulli’s Theorem.—In 1738 Daniel Bernoulli, an
Italian engineer, demonstrated that in any stream flowing steadily
‘without friction the total energy contained in a given mass of
water is the same at every point in its path of flow. In other
words kinetic energy, pressure energy and energy of position may
each be converted into either of the other two forms, theoretically
without loss. Thus if there is a reduction in the amount of energy
- contained in any one form there must be an equal gain in the sum
of the other two.

In Fig. 37, bede represents a filament of water flowing with
steady stream-line motion surrounded by other water moving with
the same velocity as that of the filament. Under these conditions
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the frictional loss that occurs will be extremely small and for the
present it will be ignored. Every particle of water passing the
section bc will, a little later, pass the section de and no water will
pass the section de which did not previously pass be.

Consider now the forces acting on this filament of water. On
the section bc whose area is a, there is a normal pressure in the direc-
tion of flow of intensity p; producing motion. On the section de
whose area is az there is a normal intensity of pressure p2 parallel
with the direction of flow and resisting motion. On the lateral
surface of the filament, indicated by the lines bd and ce, there
is a system of forces acting normal to the direction of motion,
which have no effect on the flow and can therefore be neglected.
The force of gravity, equal to the weight of the filament, acts
downward. The work performed on the filament by the three
forces will now be investigated.

Consider that in the time dt the particles of water at bc move
to b’c’ with a velocity v;. In the same time interval the particles
at de move to d'e¢’ with a velocity v2. Since there is continuity of
flow,

a101dt = agvodt.

The work, G, done by the force acting on the section bc in the
time dt is the product of the total force and the distance through
which it acts, or

Gi=piaidt foot-pounds. . . . . . (6)
Similarly the work done on the section de is
G2 = —paagvadt foot-pounds, . . . . (7)

being negative because pe is opposite in sense to p; and resists
motion.

The work done by gravity on the entire mass in moving from
the position bede to b'c’d’e’ is the same as though beb’c’ were moved
to the position ded’e’ and the mass b’c’de were left undisturbed.
The force of gravity acting on the mass beb’c’ is equal to the volume
a1dt times the unit weight w. If z; and 2; represent, respectively,
the elevations of the centers of gravity of beb’c’ and ded’e’ above
the datum plane MN, the distance through which the force of
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gravity would act on the mass beb’c’ in moving it to the position
ded’e’ is z) — 22 and the work done by gravity is

G3=wainidi(z1—22) foot-pounds. . . . (8)
The resultant gain in kinetic energy is

1‘[1}22 le"’ _wa;v;dt

) 2 2

From fundamental principles of mechanics, the total amount of
work done on any mass by any number of forces is equal to the
resultant gain in kinetic energy. Therefore from equations (6),
(7, (8) and (9).

(022—012). . e e . (9)

walvldt

101013t — p2agvedt+waivdi(z — 22) = 29

w22—-0n2). . . (10)
Dividing through by wa,v,dt and transferring, and remembering
that ai1v; = agve, there results

v, ;. _v?
79'4';-!-21 =2

This is known as Bernoulli’s equation. It is the mathe-
matical expression of Bernoulli’s theorem which is in reality the
law of conservation of energy applied to flowing water. It may
be stated as follows: _

Neglecting friction, the total head, or the total amount of
energy per pound of water, is the same at every point in the path
of flow.

Water invariably suffers a loss of energy through friction in
flowing from one point to another. If the direction of flow is
from point 1 to point 2, the total energy at 2 must be less than at 1.
In order to make equation (11) balance, a quantity, h;, equal to
the loss of energy, or what is equivalent, the loss of head due to
friction between the two points, must be added to the right-hand
side of the equation. Including the loss of head due to friction
Bernoulli’s equation becomes

+%+z2. R 1))

1)12 1)_22
29 29

This equation is the basis of all rational formulas used in
hydrokinetics. It is the foundation of the science.

+p_,ul)+zl= +p—";+22+hl . . . . . (12)
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45. Application of Bernoulli's Theorem to Hydrostatics.—
Although in hydrostatics it is not necessary to make use of Ber-
noulli’s equation, it is interesting to note that it applies to water at
rest as well as to water in motion. The points 1 and 2 (Fig. 38)
are hy and hg, respectively, below the free surface of a liquid at
rest and z; and 22 above the horizontal plane MN. The liquid
being at rest, v; and vz equal zero, and, since without velocity there
can be no friction, h, is zero. Therefore equation (12) reduces to

D1 _P2
;+zl——5)+zz, e o o o o o o (13)
or, transposing,
P11 P2
;-—;:zz—Zl. e e e e s e . (14)
From the figure
. 22—21=h;—hs.

Fia. 38. Fia. 39.

Substituting this value of 22—z, equation (14) may be written
p—pe=whi—hz), . . . . . . (15)

which is the same as equation (3), page 11.

46. Bernoulli’s Theorem in Practice.—Bernoulli’s theorem
(Art. 44) is based upon the assumptions of steady flow, stream-line
motion and continuity of discharge. Under ordinary conditions
water flows with turbulent motion (Art. 90) whereas stream-line
motion is assumed in applying Bernoulli’s theorem. The effect
of turbulence is to increase the losses and therefore this additional
loss is included with the loss of head due to friction and no further
correction is necessary.

It is permissible to write Bernoulli’s equation between any
two points on any assumed line of flow provided it is known that
there is flow between the two points. Thus, in Fig. 39, which
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represents water discharging from a reservoir through a pipe,
Bernoulli’s equation may be written between points A and B.
The relation obtained from this equation is then assumed to hold
for each of the filaments in the pipe.

47. Venturi Meter.—An illustration of the practical use of
Bernoulli’s equation is provided by the Venturi meter. This
instrument, which is used for measuring the discharge through
pipes, was invented by Clemens Herschel and named by him in
honor of the original discoverer of the principle involved. A
Venturi meter set in an inclined position is illustrated in Fig. 40.

F1g. 40.—Venturi meter.

It consists of a converging section of pipe BC and a longer
diverging section DE, the smaller ends being connected by a
cylindrical section CD, called the throat. The larger ends B and
E, termed the inlet and outlet, respectively, have the same diameter
as the pipe line in which the meter is to be installed. :

Let a1,v1, p1 and 2; represent the area, velocity, pressure and
elevation, respectively, at point 1 in the inlet. Also let ag, v2,
p: and 22 represent the corresponding quantities at point 2 in the
throat. Writing Bernoulli’s equation between points 1 and 2,
neglecting friction,

1

v Py 027 e
2g+2g++z.....(16)
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If piezometer tubes are connected at the inlet and throat, the
heights of water in these tubes afford a measure of the pressure
energy at the two points. Since the relative elevations of points
1 and 2 are also known, the only unknowns in equation (16) are
v1 and v2. For any given diameters of throat and inlet the corre-
sponding areas can be found, and since

Q=a1v1 =azvz,

vz can be expressed in terms of v;, and substituting this equivalent
value in equation (16) leaves v; as the only unknown. Solving
the equation for v; and multiplying the result by a; gives the
discharge through the pipe.

For a given discharge the difference between elevations of water
surfaces in the two piezometers will be the same regardless of

Fia. 41.

whether the meter is horizontal or inclined. If the meter is
assumed to be rotated in a vertical plane about point 2 until it
is in a horizontal position, the rate of discharge through the
meter being unchanged, the total amount of energy contained
in the water at the inlet must be the same as before the meter was

rotated. Since v; has remained constant p—ul)-l-zl must also have

remained constant. The same reasoning applies to point 2, and
hence the difference in elevation of the water levels in the two
piezometers is constant for all angles of inclination.

Venturi meters are usua.lly installed in an approximately
horizontal position.

Ezample—A Venturi meter having a throat 4 in. in diameter
is installed in a 12-in. pipe line. A mercury U-tube connected as
shown in Fig. 41 shows a difference in height of mercury columns
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of 9 in., the remainder of the tube being filled with water. Find
the rate of discharge, Q, in cubic feet per second, neglecting
friction.

Writing Bernoulli’s equation between points 1 and 2

vl py v e
2g+ w+21 2g+ w+22. « e e e e (16)
Since the angle of inclination will not affect the result, the meter
can be assumed to be horizontal. Then 2; and 22 cancel and
equation (16) becomes

%_Tg=1_v_1—v' P ¢ )
From the given data

pr_pa_9 _3

P 12)(13.6 12—9 45

The areas of circles being proportional to the squares of their
diameters,

a_ 122
az 42
and since the flow is continuous

(

ai
Q=av1=azwz and vz= 2 =0v;.

Substituting these results in equation (17) and reducing

800,
29

Vo=

=9.45

2_9.45X64.32
80

v1=2.76 ft. per second.

=7.6

2
Q=alvl=}—i<—’-'x2.76=2.17 cu. ft. per second.

The pressure in the throat of a Venturi meter is always much
less than at the entrance. This may be seen from the following
equation for a horizontal meter:

p_ +P2

2g w2 (18)
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Since the velocity increases from point 1 to point 2 there must be
a corresponding decrease in pressure, otherwise there would be an
increase in the total amount of energy per pound of water.

In the practical use of the Venturi meter the loss of head due to
friction, though small, should not be neglected.

Consider first the theoretical equation for the horizontal meter:

v® pi_v2? pe
2g+w_2g+w P 1))
or T 2 2 '
Vi =" _P1 P2
% o » h, . . . . . . (20

h being the difference in pressure at points 1 and 2, measured in
feet of water column. Since

02=%;01, D 1))
substituting, (20) becomes
o,
=2 b ... (22
% (22)

This expression reduces to

vl=\/(—a_12)gz—’il......(23)
az

Since equation (23) does not include the loss of energy (or head)
resulting from friction, it gives a greater velocity than is ever
obtained. In order to correct the formula for friction loss an
empirical coefficient, K, is applied to it. The discharge through
the meter is given by the formula

Q=av1 . . . . . . . . (A

Substituting the value of » given in equation (23) and including
the coefficient K, the formula for discharge through a Venturi
meter becomes

Q=Ka |2 . . ... @)
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The value of K is affected by the design of the meter and also by
the degree of roughness of its inner surface. It has been found
from experiments that K usually lies between 0.97 and 0.99.

48. Pitot Tube.—Fig. 42 illustrates several tubes immersed
vertically in a stream of flowing water. The upper ends of the
tubes are open and exposed to the atmosphere. At the same
depth, h4, there is an opening in each tube which allows free
communication between the tube and water in the stream. The
velocity of the water at depth hg is v.

Tubes (a), (b) and (c¢) are similar, being bent through an angle
of 90°, the tip of each tube being open. When the open end of
such a tube is directed against the current as shown by (a), the
velocity of the water causes water to rise in the tube a distance

N

(@)

Fig. 42,

h above the free surface of the stream. It is shown later in this
article that A is equal to the head due to the velocity v.

If the same tube is placed with the open end directed down-
stream as in (b) the pressure at the opening is less than ks and the
water surface in the tube .is a certain distance, h, below the
surface of the stream. A similar condition exists when the tube
is placed with its lower leg transverse to the stream as shown in (c).
In this case, according to experiments by Darcy, the vertical
distance, h2, of the water surface in the tube below the water
surface of the stream is a little greater than hy. Similarly for (d),
which is a straight tube open at each end, there is a depression,
hs, of the water column in the tube. The tube (e) is the same as
(a) except that the tip of the tube is closed and there is a small
hole on each side of the lower leg. If this tube is held with the
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lower leg parallel to the direction of flow the water surface in the
tube remains at about the same elevation as the water surface of
the stream. hy, k2 and hs are all less than the velocity head,
but directly proportional to it. From experiments by Darcy the
following approximate values of h; and hs were obtained:

h1=0.43§—”; and h2=0.68-v2—;.

The conditions of flow affecting the height of water column in
tube (d) are similar to those encountered when piezometer tubes
(Art. 21) extend through the conduit walls into the stream.
Piezometer tubes are designed to measure pressure head only and
in order that their readings may be affected 8 minimum amount

|

|
]
|
|
|
I
|

V—J—g—>—' ______
F1a. 43.—Pitot tube.

by the movement of the water, their ends should be set flush with
the inner surface of the conduit and they should never project
beyond this surface.

A bent L-shaped tube with both ends open, similar to Fig. 42
(a), is called a Pitot tube, from the name of the French investigator
who first used such a device for measuring the velocity of flowing
water.

When a Pitot tube is first placed in the position shown in
Fig. 43, water enters the opening at e until the water surface
within the tube rises a distance h above the surface of the stream.
A condition of equilibrium is then established and the quantity of
water contained within the tube will remain unchanged as long
as the flow remains steady. Assuming stream-line motion, the
conditions of flow near the entrance to the tube will be as shown
in Fig. 44. There will be a volume of dead water in the tube, the
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upstream limit of which is not definitely known, but which may
be represented by some line such as abc or ab’c or by the interme-
diate line ab’’c. Since stream-line motion is assumed, there must
be some such surface of quiescent water on the adjacent upstream
side of which particles of water will be moving with an extremely
low velocity.

Consider a particle of water flowing from d to e, d being on the
axis of the tube far enough upstream so that the velocity is not
affected by the presence of the tube, ¢ being on the upstream sur-
face of the quiescent water above referred to and at the same
elevation as d. As this particle flows from d to e its velocity is
gradually retarded from v; to practically zero at e. The velocity
head at e may therefore be called zero.

Based on the above assumptions and neglecting friction,
Bernoulli’s equation between the points d and e may be written

v

5ot ro=0+Et0. L @0

From Fig. 43
w e w

since from the figure h,—ha=h

Be_Pa_p
w w

Substituting in equation (26)
v4®

5—9—h.......(27)

Since d is a point at any depth, the general expression may be
written

_”

h—2g, P 22:))
or

v=V2h. . . . . . . (29

Hence the velocity head at d is transformed into pressure head
at e and because of this increased pressure inside the tube a column

2
of water will be maintained whose height is ;—g above the water

level outside.
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Pitot tubes of the type shown in Fig. 43 are not practicable
for measuring velocities because of the difficulty of determining
the height of the water surface in the tube above the surface of the
stream. In order to overcome this difficulty Darcy used an
instrument with two L-shaped tubes as shown in Fig. 45. One
tube is directed upstream and the other downstream, the two tubes
being joined at their upper ends to a single tube connected with
an air pump and provided with a
stopcock at A. By opening the
stopcock and pumping some of

columns are raised an equal
amount, since the pressure on
their surfaces is reduced equally.

]

Fic. 45. Fic. 46.

The stopcock can then be closed and the difference in height of
water columns can be read.

A tube of this kind requires rating, since the downstream leg,
which is the same as Fig. 42 (b), does not measure the static
pressure of the water. The difference in height of water columns,

2
hy, is greater than the velocity head, '—;—g, but the ratio between the

two is approximately constant. The value of this ratio must be
determined experimentally for each instrument.

The tubes shown in Fig. 46 give a difference in elevation of
water columns practically equal to the velocity head. The leg
measuring static head is similar to Fig. 42 (e).

Pitot tubes may be rated by determining their readings when
placed in water flowing with a known velocity or when they are
moved at a known rate through still water.

If the Pitot tube is used for measuring velocity in a closed

the air from the tubes both water -
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conduit flowing under pressure, two tubes are absolutely essential,
one measuring both pressure and velocity and the other measuring
pressure only.

PROBLEMS

1. The diameter of a pipe changes gradually from 6 in. at A to 18 in. at B.
A is 15 ft. lower than B. If the pressure at A is 10 lbs. per square inch and
at B, 7 lbs. per square inch when there are 5.0 cu. ft. per second flowing,
determine:

(a) The direction of flow.
(b) The frictional loss between the two points.

2. If in Problem 1 the direction of flow is reversed, determine the pressure
at A if all other factors, including the frictional loss, remain the same.

8. In Problem 1, determine the diameter of pipe at B in order that the
pressure at that point will also be 10 lbs. per square inch, all other factors
remaining constant.

4. Determine the discharge in Problem 1, assuming no frictional loss, all
other conditions remaining as stated. )

5. What would be the difference in pressure in pounds per square inch
between A and B, Problem 1, if there were 6.2 cu. ft. per second flowing,
neglecting friction.

8. A siphon having a diameter of 6 in. throughout, discharges from a
reservoir, A, into the airat B. The summit of the siphon is 6 ft. above the
water surface in A and 20 ft. above B. If thereis a loss of 3 ft. head between
A and the summit and 2 ft. between the summit and B, what is the absolute
pressure at the summit in pounds per square inch? Also determine the
rate of discharge in cubic feet per second and in gallons per day.

7. In Problem 6 determine the absolute pressure in pounds per square
inch at the summit and the discharge in cubic feet per second if the diameter
at the summit is 5 in. and at the outlet, 6 in., all other data remaining the same.

. 8. A flaring tube discharges water from a reservoir at a depth of 36 ft.
below the water surface. The diameter gradually increases from 6 in. at the
throat to 9 in. at the outlet. Neglecting friction determine the maximum
possible rate of discharge in cubic feet per second through this tube. What is
the corresponding pressure at the throat?

9. In Problem 8 determine the maximum possible diameter at the outlet
at which the tube will flow full.

10. A jet of water is directed vertically upward. At A its diameter is
3 in. and its velocity is 30 ft. per second. Neglecting air friction, determine
its diameter at a point 10 ft. above A. )

11. Water is delivered by a scoop from & track tank to a locomotive tender
that has a speed of 20 mi. per hour. If the entrance to the tender is 7 ft.
above the level of the track tank and 3 ft. of head is lost in friction at what
velocity will the water enter the tender?

12. In Problem 11 what is the lowest possible speed of the train at which
water will be delivered to the tender?
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18. A Venturi meter having a diameter of 6 in. at the throat is installed
in an 18 in. water main. In a differential gage partly filled with mercury
(the remainder of the tube being filled with water) and connected with the
meter at the throat and inlet, the mercury column stands 15 in. higher in one
leg than in the other. Neglecting friction, what is the discharge through the
meter in cubic feet per second?

14. In Problem 13 what is the discharge if there is 1 ft. of head lost between
the inlet and the throat, all other conditions remaining the same.

15. In Problem 13 what would be the difference in the level of the mercury
columns if the discharge is 5.0 cu. ft. per second and there is 1 ft. of head
lost between the inlet and throat?

16. A Venturi meter i8 installed in a 12-in. water main. If the gage
pressure at the meter inlet is 8 lbs. per square inch when the discharge is 3.0
cu. ft. per second determine the diameter of the throat if the pressure.at that
point is atmospheric. Neglect friction.

17. A flaring tube discharges water from a vessel at a point 10 ft. below
the surface on which the gage pressure is 8.5 lbs. per square inch. If the
diameter of the throat is 4 in., at which point the absolute pressure is 10 lbs.
per square inch, determine the discharge in cubic feet per second, neglecting
friction.

18. In Problem 17 what is the diameter of the tube at the discharge end?




CHAPTER VII
FLOW OF WATER THROUGH ORIFICES AND TUBES

49. Description and Definitions.—As commonly understood in
hydraulics, an orifice is an opening with a closed perimeter and of
regular form through which water flows. If the perimeter is not
closed or if the opening flows only partially full the orifice becomes
a weir (Art. 68). An orifice with prolonged sides, such as a piece
of pipe two or three diameters in length set in the side of a reservoir,
is called a tube. An orifice in a thick wall has the hydraulic proper-
ties of a tube. Orifices may be circular, square, rectangular or of
any other regular shape.

The stream of water which issues from an orifice is termed the
jet. An orifice with a sharp upstream edge so formed that water
in passing touches only this edge is called a sharp-edged orifice.
The term velocity of approach as applied to orifices means the mean
velocity of the water in a channel leading up to an orifice, The
portion of the channel where the velocity
of approach is considered to occur is
designated the channel of approach. An
orifice is spoken of as a vertical or hori-
zondal orifice depending upon whether it
lies in a vertical or horizontal plane.

60. Characteristics of the Jet.—TFig.
47 represents a sharp-edged, circular
orifice. The water particles approach
the orifice in converging directions as
shown by the paths in the figure.
Because of the inertia of those particles
whose velocities have components par-
allel to the plane of the orifice, it is -

. Fic. 47 —Sharp-edged
not possible to make abrupt changes in IC orifice.

their directions the instant they leave
the orifice and they therefore continue to move in curvilinear
71
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paths, thus causing the jet to contract for some distance beyond
the orifice. This phenomenon of contraction is referred to as the
contraction of the jet and the section where contraction ceases is
called the vena contracta. The vena contracta has been found to be
at a distance equal to about one-half the diameter of the orifice
from the plane of the orifice, at a in figure.

Beyond the vena contracta the cross-sectional area of the jet
does not undergo any change excepting insofar as it is affected by
gravity. If the direction of the jet is vertically upward (Fig. 51),
or if it has an upward component, the force of gravity retards its
velocity and thus increases its cross-sectional area; and, con-
versely, if the direction of the jet has a downward component,
gravity increases its velocity and decreases its cross-sectional
area.

If a jet discharges into the air the pressure within the jet at
its vena contracta and beyond is atmospheric pressure. This
may be seen by investigating the conditions which will -esult
from assuming pressures greater or less than atmospheric pressure.
If, for- example, the pressure within a cross-section is assumed to
be greater than atmospheric pressure, there will be an unbalanced
pressure along every radius of the section—that is, the pressure
at the center will be greater than at the circumference. Since
water is incapable of resisting tensile stress this would cause the
jet to expand. In a similar manner if the internal pressure is
assumed to be less than atmospheric, since water unconfined is
incapable of resisting a compressive force, the unbalanced pressure
will produce an acceleration and therefore a further contraction.
Since neither expansion nor contraction occurs, it follows that the
pressure throughout the vena contracta must be atmospheric
pressure.

Between the plane of the orifice and the vena contracta the
pressure within the jet is greater than atmospheric pressure
because of the centripetal force necessary to change the direction
of motion of the particles. That this pressure must be greater
than atmospheric can easily be proved by writing Bernoulli’s
equation between a water particle in the jet back of the vena
contracta and another particle in the vena contracta.

The form assumed by jets issuing from orifices of different
shapes presents an interesting phenomenon. The cross-section
of the jet is similar to the shape of the orifice until the vena con-
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tracta is reached. Fig. 48 shows various cross-sections of jets
issuing from square, triangular and elliptical orifices. The left-
hand diagram in each case is a

cross-section of the jet near the

vena contracta. The following D O CG:’ :U:
diagrams are cross-sections at suc-

cessively greater distances from the

orifice. This phenomenon, which Y
is common to all shapes of orifices A - O Y
excepting circular orifices, is known .

as the inversion of the jet. After

passing through the fourth stage O O O o
Sho,wn il} ?he figure the jet re.verts Fi6. 48.—Form of jet from square,
to its original form and continues yangular and elliptical orifices.
to pass through the cycle of changes

described above as long as it flows freely or is not broken up by
wind or air friction.

61. Fundamental Orifice Formula.—Fig. 49 represents the
general case of water discharging through an orifice. In the

Fi16. 49.—Discharge from orifice.

derivation of the fundamental formula it will be assumed that the
water flows without friction and also that there is no contraction
of the jet and therefore no pressure within the jet in the plane
of the orifice. In order to write a general expression applicable
to all filaments, it will be necessary to make the further assump-
tion that all of the water particles in a cross-section of the
channel of approach flow with the same velocity.

There are two chambers, A and B, the gas pressure in chamber
4 being p4 and in chamber B being ps, the relation of p4 to ps
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being such that water will flow from chamber A to chamber B.
The flowing water may be considered to be made up of filaments
of which mn is one, m being a point in the water in chamber A
and n a point in the jet in the plane of the orifice. The filament
passes through the orifice at a distance k below the surface of tke
water. The point m is at a distance hm below the water surface
and at a distance z above n. vn is the velocity at m and v, is
the velocity at n. Bernoulli’s equation may be written between
the points m and » as follows:

vmz Pa _E Ps
St (et ) b=t L

and since hm+2=h

U’ _Um’ PB_Pa
h—z 2g+w o e e D
and
2 —_
N e ) NSO

These formulas are general expressions of relation between velocity
and head for any filament.

Since the filaments at different elevations discharge through
a vertical orifice under different heads their velocities are not
the same. Where, however, the head is large in comparison with
the height of the opening, the mean velocity of the jet may be
taken as the velocity due to the mean head. The theoretical mean
velocity thus obtained may be represented by the symbol v,
Introducing also the assumption that all of the water particles
in a cross-section of the channel of approach flow with the same
velocity, V; vs and vm in formulas (2) and (3) may be replaced,
respectively, by v and V, which gives

h=2‘f__E+p_"_?_4

5 ot e
v.=\/2g(h+—g+p—‘;—””).. N )}

From the definition (Art. 49) V is the velocity of approach.
The condition most commonly encountered is that illustrated

. @

and
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in Fig. 50, where the surface of the water and the jet are each
exposed to the atmosphere. In this case p,=ps=atmospheric
pressure and formulas (4) and (5) reduce, respectively, to

vV
e e ®

v,=\/2g(h+z-?;). Coe e e e e )

If the cross-sectional area
of the reservoir or chan-
nel leading up to the
orifice is large in com-
parison with the area of
the orifice the velocity of
approach, V, may be
called - zero and equations

_(6) and (7) reduce, respect-  Fiq. 50 —Orifice with water surface and
ively, to jet subjected to equal pressures.

ot~ (-

and

X5
S ROSNSANNNNRNNN

and

0=V%h. . . . . . . . . 9

These formulas express the theoretical relation between head and
velocity for an orifice discharging from a relatively large body of
water whose surface is subjected
to the same pressure as the jet.
It is under this condition that
discharge from orifices ordinarily
occurs and the above formulas
are the ones most commonly
used. Since these formulas also
express the relation between
potential head and velocity head
(Art. 43) they have a wide appli-
cation in hydraulics.

Formula (9) is also the formula
for the velocity acquired by a
body falling a distance k through space. The theoretical velocity
of water flowing through an orifice is therefore the velocity acquired
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Fia. 51.—Horizontal orifice.
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by a body falling freely n vacuo through a distance equal to the
head on the orifice. This principle, discovered by Torricelli in
1644, is known as Torricells’s theorem. Fig. 51 illustrates a hori-
zontal orifice discharging under a head h. According to Torri-
celli’s theorem the jet should rise to a height h, but experiments
show that the actual height to which the jet rises is slightly less
than h. The discrepancy is due to the retarding effects of friction
and viscosity. This matter is discussed more fully in the following
article.

62. Orifice Coefficients.—The assumptions which were made
in the derivation of formula (5) may be summarized briefly as
follows:

(a) All water particles in a cross-section of the channel of
approach flow with the same velocity.

(b) There is no contraction of the jet.

(¢) The water flows without friction.

Since these conditions do not in reality exist, it is necessary
to modify the derived formulas to make them applicable to actual
conditions. To accomplish this, three empirical coefficients are
applied to formula (5), there being one coefficient to correct for
the difference between the assumed conditions and the actual con-
ditions for each of the above assumptions. The method of cor-
recting for each assumption will be discussed in the order given
above.

(a) Correction for non~uniformity of velocity wn cross-section of
channel of approach. The effect of the variation in velocity in a
cross-section of the channel of approach—that is, the variation
in the velocity with which the water particles in the different
filaments approach the orifice, is similar to the effect of this condi-
tion on the discharge over weirs. The matter being of relatively
much greater importance in this connection is taken up under
weirs and will not be discussed here. (See Art. 72 (a).)

The commonly accepted method of modifying formula (5) so
as to have it include this correction is to apply a coefficient « to

the term 12/—: The value of « has not been determined for orifices.

It varies with the distribution of velocities in the channel of ‘ap- -
proach and is always greater than unity. With the coefficient
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a included, calling o' the velocity after the correction has been
applied, formula (5) becomes

2 —
v'=\/2g(h+a%+”‘—wﬂ).- .. .. @0

(b) Correction for contraction.—The ratio of the cross-sectional
area of the jet at the vena contracta to the area of the orifice is
called the coefficient of contraction. Thus, if o’ and a are, respect-
ively, the cross-sectional area of the jet at the vena contracta
and the area of the orifice and C; is the coefficient of contraction,

al

Cc=; or a'=Cea.

If v is the actual mean velocity in the vena contracta the discharge
through the orifice is
Q=av=Cav. . . . . . . . (11

The mean value of C. is about 0.62. It varies slightly with the
head and size of orifice.

(c) Correction for friction.—The velocity of the jet suffers a
retardation due to the combined effects of friction and viscosity.
The ratio of the actual mean velocity, v, to the velocity, v/, which
would exist without friction, has been termed the coefficient of
velocity, but it might more properly be called the coefficient of
friction. Designating the coefficient of velocity by the sumbol C,

v

Cy=— or v=Cyp'.

v
The average value of C, for a sharp-edged orifice is about 0.98.
Substituting the value of v’ given in formula (10), the general
formula for mean velocity of a jet issuing from an orifice, with the
two coefficients to correct, respectively, for friction and the
assumption of uniform velocity in a cross-section of the channel
of approach, becomes

v=C.,\/2g<h+ag+?i;—pB>. ... (2

If the pressures p4 and pg are equal

v=C,\/Zg<h+a-szg). N O & )
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If the velocity of approach is so small that it can be called zero
without introducing an appreciable error

v=CV2h. . . . . . . . . . . (19

Substituting the value of v given by formula (12) in (11)
the general formula for discharge through an orifice with the three
corrective coefficients becomes

Q=CGC.a\/2g(h+ag+pA—;-@>. C . (5)

It is usual to combine C.C, into a single coefficient, C, called
the coefficient of discharge. Substituting C for C.C,, the general
formula for discharge is

Q=Ca,\/2g(h+al,2§+£‘1iﬂ>. N ¢ )}

If the pressures p4 and pp are equal

Q=ca,/2g(h+ag>. N 1)

If the velocity of approach V is so small that it can be considered
to equal zero

Q=CaVoh. . . . . . . . . . . . (18)

As orifices are ordinarily used, the pressures p, and ps are equal
and the velocity of approach is so small that it may be neglected
without appreciable error. Formula (18) is therefore recognized
as the common discharge formula for an orifice.

In the remainder of this chapter, if not otherwise specified, it
will be assumed that the pressure on the water surface is the same
as the pressure on the jet, and the velocity of approach will be
considered to be so small as to be negligible. Formulas (14)
and (18) then become the respective formulas for mean velocity
and discharge.

Numerical values of C; and C, may be obtained experimentally
but an accurate determination is extremely difficult. C. may be
obtained approximately by measuring the diameters of the vena
contracta and orifice with calipers, the coefficient of contraction
being equal to the ratio of the squares of their respective
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CoEFFICIENTS OF DiscHARGE (C) ror CIRCULAR ORIFICES

Diameter of orifice in feet

0.02 0.04 0.07 0.1 0.2 0.6 1.0

..... ,0.637 | 0.624 | 0.618
0.655 .630 .618 .613 | 0.601 | 0.593
.648 .626 .615 .610 .601 .594 | 0.590
.644 .623 .612 .608 .600 .595 .591
.837 .618 .608 .605 .600 .596 .593

.632 .614 .607 .604 .599 .597 .595
.629 .612 .605 .603 .599 .598 .596
.627 .611 .604 .603 .599 .598 .597
.623 .609 .603 .602 .599 .597 .596
.618 .607 .602 | .600 .598 .597 .596

.614 .605 .601 .600 .598 .596 .596
.611 .603 .599 .598 .597 .596 .595
.601 .599 .597 .596 .596 .596 .594
.596 .595 .594 .594 .504 .594 .593
.593 .592 .592 .592 .592 .592 .592

COEFFICIENTS OF DISCHARGE (C) FOR SQUARE ORIFICES

B
s-g'-:-

Side of square in feet

0.02 0.04 0.07 0.1 0.2 0.6 1.0

o000
o ®o e

oW
oo <;oO

38880
coocoo

b

..... 0.643 | 0.628 | 0.621
0.660 .636 .623 .617 | 0.605 | 0.598
.652 .631 .620 .615 .605 .600 | 0.597
.648 .628 .618 .613 .605 .601 .599
.641 .622 .614 .610 .605 .602 .601

.837 .619 .612 .608 .605
.634 .617 .610 .607 .605
.632 .616 .609 .607 .605
.628 .614 .608 .606 .605
.623 .612 .607 .605 .604

:602 :601 .601 600 600

604
604
604
603
603
.619 .610 .606 .605 .604 .603 .602
602
601
599
.599 .508 .598 .598 .598 598

.598
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diameters. A Pitot tube may be used to determine approximately
velocities in the vena contracta.

The coefficient of discharge may be obtained with great
accuracy by measuring the quantity of water flowing from an
orifice of known dimensions in a given time and determining the
ratio between this discharge and the theoretical discharge. Since
in practice it is usually the discharge from orifices that is tequired,
it is the coefficient of discharge that is of greatest value to en-
gineers. An average value of the coefficient of discharge is about
0.60. It is not a constant, but varies with the head and also with
the shape and size of the opening. On page 79 are tables of
values of C for circular and square orifices taken from Hamilton
Smith’s Hydraulics. Sharp-edged orifices provide an accurate
means of measuring small rates of discharge.

53. Algebraic Transformation of Formula with Velocity of
Approach Correction.—The fundamental orifice formula with
velocity of approach correction as derived in Art. 52 is

Q=Ca,‘/2g<h+a%). N )

By definition V=Q/A where 4 is the cross-sectional area of the
stream in the channel of approach. Substituting this value of V
and reducing, equation (17) becomes

CaV2gh

e

Expanding the denominator by the binomial theorem gives a
diminishing series and dropping all terms excepting the first
two since they will be very small quantities, the formula may be
expressed in the approximately equivalent form

Q= caxfzg—(1+°‘g .:112) N ¢ 1)

The term within the parenthesis is the velocity of approach
corrective factor. It becomes unity when the ratio of the orifice
to the cross-sectional area of the stream in the channel of approach
is 80 small that it may be considered zero. Where a correction
for velocity of approach is required, formula (20) will be found
more convenient than formula (17).

(19)
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654. Head Lost in an Orifice.—Consider water to be discharging
from an orifice under a head k (Fig. 52). Because of friction, the

velocity of discharge will be less than V'2gh 2gh or, from formula (14),
page 78

v=CV2h.. . . . . . . (19
The heatl producing discharge
is therefore,
1 42
h_C_.? % 19)

That is,“ h is the total head,
including the lost head. The

AN

i
"

Z 27 2227 /[ﬂ

F1a. 52 —Sharp-edged orifice. - F1a. 53.—Path of jet.

| 47

head that is not lost -is the velocity head due to the actual
velocity v. Therefore,

Lost head =Total head —velocity head or, placing the symbol
ho for lost head,

For a sharp-edged orifice, since C,=0.98, h,=0.041 %

Since v =C,;, formula (22) reduces to ,
ho=(1—C2h, . . . . . . . . . (23)

and substituting the value of C, for a sharp-edged orifice
ho=0.040 A.

Formulas (22) and (23) are fundamental and are applicable
to any orifice or tube whose coefficient of velocity is known.
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66. Path of Jet.—When water issues from an orifice the
direction of the jet is at first normal to the plane of the orifice
but, for orifices not in a horizontal plane, the force of gravity
causes it immediately to begin to curve downward. Let z (Fig.
53) be the abscissa and y the ordinate of any point in the path
of a jet discharging from a vertical orifice. The space z will be
described uniformly in a certain time ¢ and if v is the velocity
with which water leaves the orifice

=0t

The jet has a downward acceleration which conforms to the law of

falling bodies and therefore
2

y==3
Eliminating ¢ between the two equations
2v?
:c2=7y,........(24)

which is the equation of a parabola with its vertex at the orifice.
Since by formula (14), page 78,

v=C, ‘\/_2_97;,, P S (14)
equation (24) may also be written
22=4C?hy. . . . . . . . . (25

This formula indicates an experimental method of obtaining C,;
z, y and h may be measured and substituted in the formula and
C, may be computed
66. Orifices under Low Heads.—Where the head on a vertical
orifice is small in comparison with the height of the orifice there is
- theoretically an appreciable dif-
ference between the discharge
obtained by assuming the mean
velocity to be that due to the
0 mean head and the discharge ob-
| tained by taking into considera-
L > tion the variation in head. The
exact formula for rectangular
orifices is derived as follows:
Fig. 54 shows a rectangular orifice of width L and height D,

F1G. 54 —Rectangular orifice.
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the water surface and jet being each subjected to atmospheric
pressure. h; and hg are the respective heads on the upper and
lower edges of the orifice. Neglecting velocity of approach, the
theoretical discharge through any elementary strip of area Ldy
at a distance y below the water surface, is given by the equation

dQ,= LV 2gydy
which integrated between the limits of k2 and h; gives
Q=3LV2g(ho¥%—h1%). . . . . . (26)

This formula gives the theoretical discharge from an orifice
where the pressures on the water surface and jet are equal and
the velocity of approach is considered to be zero. When h; is
zero—that is, when the water surface does not touch the upper
edge of the opening, the formula reduces to

Q=%V2gLho%, . . . . . . (27

which is the theoretical formula for discharge over a weir without
velocity of approach correction (see Art. 70).

To make formula (26) applicable to actual conditions a coeﬂi—
cient of discharge must be introduced and the formula becomes

=§CLV2g(hs¥%—h¥%). . . . . . (28)

Values of C for this formula have not been well determined and
it is seldom used in practice. Formula (18), which for rectangular
orifices may be written

Q=CLDV2gh, . . . . . . . (29)

" h being the head on the center of the orifice and C the coefficient
of discharge for rectangular orifices as given on page 79, may
be used satisfactorily even for quite low heads since these values
of C include corrections for the approximations contained in the
formula.

The theoretical difference between formulas (28) and (29)
may be shown as follows: h being the head on the center of the
rectangle, ha=h+3D and hy=h—34D. Substituting these values
in equation (26) and expanding them by the binomial theorem,

D* Dt De
Q-CLD\/2gh.<1—96h2—2048h4—21845h6. : ) . (30)
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This shows that formula (29) always gives a greater discharge than
formula (28) if the same value of C is used in each case. For
h=D, the sum of the infinite series is 0.989 and for h=2D, it
i8 0.997. The theoretical error introduced by using formula (29)
is thus about 1 per cent where h=D and 0.3 of 1 per cent where
h=2D.

In a manner similar to that described above for rectangular
orifices, the discharge for a circular orifice may be shown to be

D2 5D4 ) .. G

=1 - =
Q ,rCDz\/29h<1 o T )

F1a. §5.—Orifice with bottom con-  Fig. 56.—Orifice with bottom con-
traction partially suppressed. traction completely suppressed.

in which D is the diameter of orifice and A is the head on the center
of orifice. This formula gives results differing from those obtained
by the approximate formula similar to the corresponding formulas
for rectangular orifices. If h=D the sum of the series is 0.992
and if h=2D the sum is 0.998. Formula (31) is seldom, if ever,
used in practice.

67. Suppression of Contraction.—The effect of constructing an
orifice so as to reduce the contraction is to increase the cross-
sectional area of the jet and thus to increase the discharge. If an
orifice is placed close to a side or the bottom of a reservoir the
tendency of the filaments of water to approach the orifice from all
directions (Fig. 55) is restricted and some of the filaments must
approach in a direction more nearly parallel to the direction of
the jet than they would otherwise. If the orifice is flush with
one side or the bottom (Fig. 56) the contraction on that side
of the orifice will be wholly suppressed.
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In a similar manner, rounding the inner edge of the orifice
(Fig. 57) reduces contraction. An orifice constructed to con-
form to the shape of the jet which issues from a sharp-edged orifice

F1a. 57 —Orifice with rounded entrance.  Fia. 58 —Bell-mouth orifice.
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F1a. 59.—Sharp-edged orifice F1a. 60.—Standard short tube.
with extended sides.
(Fig. 58) is called a bell-mouth orifice. The coefficient of con-
traction of such an orifice approaches very close to unity.
68. Standard Short Tube.—Extending the sides of an orifice
does not affect the discharge so long as the jet springs clear. The
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orifice illustrated in Fig. 59 has a sharp upstream corner and the
conditions of flow are the same as for a sharp-edged orifice in a
thin plate.

When the jet touches the sides of the orifice the conditions of
flow are changed. A circular orifice with a sharp edge having
sides extended to about 23 diameters is called a standard short tube.
The jet is contracted by the edge of the orifice, as at m (Fig. 60),
and for low heads it will expand and fill the tube. For high heads
the jet may at first spring clear of the sides of the tube, but by
temporarily stopping the tube at its discharging end and allowing
the water to escape, the tube can be made to flow full. The moving
water carries with it a portion of the air which is entrapped in the
space, 8, causing a pressure less than atmospheric pressure. The
result is to increase the head under which water enters the orifice
and therefore the discharge is greater than occurs from a sharp-
edged orifice of the same diameter discharging freely into the air.

Conditions at the outlet
end of the tube will first be
considered. By writing Ber-
noulli’s equation between a
point in the reservoir where
the velocity of approach may
be considered zero and a
point, 7, in the outlet (Fig. 61)

= there is obtained, as for an
a0 orifice (Art. 51) the relation
0=V 2gh o e (9)

Since the tube flows full, the
coefficient of contraction at
the outlet equals unity. It
has been found experimentally
that the coefficient of dis-
Fi6. 61.—Standard short tube. charge, C, and therefore the
coefficient of velocity, Cs, for
the outlet equals approximately 0.82, the value of the coefficient
varying slightly with the head and diameter of tube. Therefore
from formula (14), page 78
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v=CiV2h=0.82V2gh, . . . . . (32),
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and since the coefficient of contraction is unity,
Q=CaVv'2gh=0.82aV2gh. . . . . . (33)

The discharge is thus about one-third greater than for a sharp-
edged orifice of the same diameter.

To investigate conditions at the contracted portion of the jet,
Bernoulli’s equation may be written between a point on the
water surface, where the velocity is considered zero and the
pressure is atmospheric, and a point m in the contracted portion
of the jet. Thus

0+34+h="" 4P Lot head (34)
o e

Assuming the coefficient of contraction at m to be 0.62, the same
as for a sharp-edged orifice discharging freely into the air,and
writing the equation of continuity between m and n

v X0.62a=vXa

or
m=16lv. . . . . . . . (35
2
The head lost between the reservoir and m (page 81) is 0.04 %
Substituting these values, equation (34) becomes
_(1.61v)2 | pm (1.61v)2
0+34+h= % + > +0.04 % (36)
and substituting » from equation (32) and reducing,
Prn_34_08h. . .. ... @3
w

There exists, therefore, a partial vacuum at m which will lift a
water column 0.8% (Fig. 61), the pressure being 0.8wh less than
atmospheric pressure. This has been confirmed experimentally.
Evidently the relation does not hold when 0.8k becomes greater
than 34 ft., or when the head becomes greater than approxi-

mately 42.5 ft., since this condition gives a negative value to p—u:'

in equation (37) which is not possible.
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The lost head in the entire length of a standard short tube
(see Art. 54) is given by the formula

ho=(b%—1>%, e e e e . (22)
2

and since C,=0.82, the formula gives ho=0.50 %

This case is important since the entrance to a pipe, where the
end of the pipe is flush with a vertical wall, is usually considered
as a standard short tube and the head lost at entrance to the
pipe is taken as the head lost in a standard short tube (see page156).

Fi6. 62.—Converging tube with Fia. 63.—Converging tube with
sharp-cornered entrance. rounded entrance.

69. Converging Tubes.—Converging tubes having a civcular
cross-section are frustums of cones with the larger end adjacent
to the reservoir. They may have a sharp-cornered entrance as in
Fig. 62 or a rounded entrance as in Fig. 63. The jet contracts
slightly at a, just beyond the end of the tube. The coefficient of
contraction, C,, decreases as the angle of convergence, 6, increases;
becoming 0.62 for §=180° when the tube becomes a sharp-edged
orifice. The coefficient of velocity, C, on the other hand, decreases
as 0 decreases. As for any orifice

Q=CCavgh=CavVigh . . . . . (39)

The following table gives coefficients for converging, conical tubes
with sharp-cornered entrances, interpolated from experiments by
d’Aubuisson and Castel. These results are interesting in that
:hey show the general laws of variation of coefficients but, on
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account of the small models used in the experiments, they should
not be taken as generally applicable to all tubes of this type.

CoEerrICcIENTS FOR CoNicAL CoNVERGING TUBEs

An f 6 (Fig. 62
Coef- gle of convergence, 6 (Fig. 62)

ficient 0° | 50 I 10°

15° | 20° | 25° | 30° | 40° | 50°

C, 0.829| 0.911| 0.947| 0.965| 0.971| 0.973| 0.976| 0.981| 0.984
Ce 1.000{ .999| .992| .972| .952| .935| .918 .888| .859
c 0.829| .910| .939| .938| .924| .911| .896| .871| .845

The coefficient of velocity and therefore the coefficient of
discharge is increased@®y rounding the entrance (Fig. 63), since
this reduces the ly&d losp in the tube. The coefficient of con-
traction will not ‘be materjally changed. Exact values of coeffi-
cients will depend upon ‘the extent to which the corner is rounded.
Maximum discharge is obta.ined. when the shape of the entrance
conforms to the shape of the conbra.c@ed jet.

60. Nozzles.—A nozzle is a."qovaerging tube attached to the
end of a pipe or hose. The nozzle increases the velocity of the
issuing jet, thus increasing the range of distance which it covers.
Fig. 64 illustrates two types of nozzles in common use. Each of
these has a cylindrical tip of such length that it will flow full,
thus preventing contraction and increasing the discharge. The
converging part of the tube may
be the frustum of a cone as in
Fig. 64 (@) or the inside may be
convex as in (b). Each of these
shapes gives an efficient stream.
The following mean values of co- (%)
efficients of discharge for smooth
nozzles, similar to Fig. 64 (a),
having a diameter at the base of 1.55 in., have been determined
from experiments by Freeman.!

IR I IR I 2

F16. 64.—Nozzles.

Diameter in inches. . . .. 3 |

3 1 13
Coefficient of discharge..’ 0.983 { 0.982

0.980 | 0.976

1% 13
I 0.971 | 0.959

1 JonN R. FREEMAN: Experiments Relating to Hydraulics of Fire Streams,
Trans. Amer. Soc. Civ. Eng., vol. 21, pp. 303—482 (1889).
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Since the coefficient of contraction is unity, the coefficients of
discharge given above are also the coefficients of velocity.

The nozzle being a form of tube to which formula (22), page 81,
applies, the head lost in the nozzle is

1 el
M-(C—'z—1>2—g, N )
or substituting values of C, given in the above table,
ho=(0.04t00.09) 2, . . . . . (39)

in which v is the mean velocity at the outlet of the nozzle.
Expressed as a function of the velocity, »;, in the hose or pipe
having a diameter D, the diameter of the nozzle being d,

D 41)12

ho=(0.04 to 0.09)(3) L

Bernoulli’s equation, for a horizontal nozzle, may be written between

a point at entrance to the nozzle and a point in the jet as follows:

2

%g=§'v;+lost head, . . . . . (41)

in which p; is the gage pressure at the entrance, v, is the velocity

at entrance and v is the

velocity in the jet. From

this equation the pressure

at the base of the nozzle,

-T- p1, may be determined if

the discharge is known or

L the discharge may be de-

"termined if p; is known.

61. Diverging Tubes.

Fig. 65 represents a coni-

cal diverging tube, having

Fia. 65.—Diverging tube. rounded entrance corners,

so that all changes in

velocity occur gradually. Such a tube, provided the angle of

flare is not too great nor the tube too long, will flow full. The

theoretical velocity, », at the outlet of the tube, obtained in the
same manner as for an orifice (Arts. 51 and 52), is

v=V'2gh, T ()]

(40)
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the actual mean velocity being
v=Cp‘\/27h;, . . . . . . (14)

where C, is the coefficient of velocity at the outlet.

Experiments indicate that even under favorable conditions
the value of C, is small. Venturi and Eytelwein, experimenting
with a tube 8 in. long, 1 in. in diameter at the throat and 1.8 in.
in diameter at the outer end, obtained results which give a value
of C, of about 0.46. The lost head (formula (22), Art. 54) was,
therefore, approximately 0.79h.

Even with this large loss of head the discharge through the
tube was about two and one-half times the discharge from a sharp-
edged orifice having the same diameter as the throat of the tube.

The greater portion of the loss of head occurs between the
throat and outlet of the tube where the stream is expanding and
thus has a tendency to break up in eddies with a waste of energy.
Experiments by Venturi indicate that an included angle, 6, of
about 5° and a length of tube about nine times its least diameter
give the most efficient discharge. A diverging tube, such as that
shown in Fig. 65, is commonly called a Venturi tube.

. The pressure head at the throat is evidently less than atmos-
pheric pressure. This may be shown by writing Bernoulli’s
equation between m and n. When the throat is so small that
Bernoulli’s equation gives a negative absolute pressure at m, for-
mula (14) no longer holds. The conditions are similar to those
already described for a standard short tube, Art. 58. :

62. Borda’s Mouthpiece.—Since the contraction of a jet issuing
from an orifice is caused by the water entering the orifice from
various directions inclined to the axis of the orifice, it follows
that the greater the angle between the extreme directions the
greater will be the contraction of the jet. The extreme case
occurs in Borda’s mouthpiece (Fig. 66), where the water
approaches the orifice from all directions. This mouthpiece
consists of a thin tube projecting into the reservoir about one
diameter. The proportions are such that the jet springs clear
of the walls of the tube. Borda’s mouthpiece is of interest because
it is possible to obtain its coefficient of contraction by rational
methods.

The cross-sectional area of the jet at the vena contracta, mn,
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is @’ and the velocity at this section is v. If a is the area of the
opening, the coefficient of contraction C.=a’/a.

The size of the reservoir
is assumed to be so large in
comparison with the area of
=’ V] the orifice that the velocity

of the water within the
reservoir may be neglected
and that the pressure on the
walls will, therefore, follow
the laws of hydrostatics.
Excepting the pressure act-
-ing on the horizontal pro-
jection de of the mouthpiece
on the opposite wall, the
horizontal pressures on the
walls will balance each
other. The total pressure
on de is wah, which is also
the resultant horizontal accelerating force acting on the water
entering the mouthpiece.

Consider the mass of water zymn to move to the position z'y’
m'n’ in t seconds. The change in the momentum of the mass con-
sidered is the difference in the momentum of the mass zz'yy’ and
mm/nn’. But the momentum of zz'yy’ is entirely vertical, there-
fore the change in momentum in a horizontal direction is equal to
the momentum of mm’nn’, which is produced by the action of the
force wah.

>

F1e. 66.—Borda’s mouthpiece.

’ I
and its momentum is _v;t_tg

!,
. avtw
The mass of mm/nn’ is

g
The impulse of the force wah is waht. Equating impulse and
change of momentum,

what =2 v;tw,

therefore,

o _gh

a v
and since

v=C \/ﬂ
a C
a ‘”20. 2z
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Therefore, assuming the coefficient of velocity to be unity, the
coefficient of contraction is theoretically 0.5, or calling the coeffi-
cient of velocity 0.98, the same as for a sharp-edged orifice, the
coefficient of contraction is 0.52. This value has been verified
approximately by experiments.

63. Re-entrant Tubes.—Tubes, having their ends project into
a reservoir (Fig. 67), and having a length of about 2} diameters,
are called re-entrant or inward-projecting tubes. The action of
water in such tubes is similar to that in standard short tubes
(Art. 58), except that the contraction of the jet near the entrance
is greater, At the discharge end the tube flows full and the

Natnitvasueiarenssae

N

F16. 67.—Re-entrant tube. Fic. 68 —Submerged onﬁce

coefficient of velocity therefore equals the coefficient of discharge.
Thus C.=1 and C,=C.

From experiments C,=0.75. The head lost, from equation
(22) (Art. 54) is, therefore, hg=0.78 2—”;

This case is important since the entrance to a pipe, which
projects into a body of water, may be considered as a re-entrant
tube and the head lost at entrance to the pipe is taken as the head
lost in a re-entrant tube (Art. 102).

64. Submerged Orifice.—An orifice discharging wholly under
water (Fig. 68) is called a submerged orifice. = The assumption is
usually made that every filament of water passing through the
orifice is being acted upon by a head, h; —hz=h, the difference
in elevation of water surfaces. Based upon this assumption
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and using the same nomenclature as for orifices with free dis-
charge

v;=V2gh e e e e e e e e e e (9)

v=CV2h . . . . . . . . . . (14
and

Q=CLaV2h=CaV2gh. . . . . . (18)

Coefficients of discharge for sharp-edged, submerged orifices
are very nearly the same as for similar orifices discharging into the
air.

The assumption that ks is the pressure head on the center of
the orifice at its lower side is not strictly true unless all of the
velocity head, due to the velocity of the water leaving the orifice,
is lost in friction and turbulence as the velocity is reduced to zero.
It has been shown experimentally that less than 90 per cent of
this velocity head may be lost. Assuming a loss of 90 per cent,
the pressure head at the center of the orifice is h2—0.12 -2—02 The
effect of this condition on the discharge may be investigated by
writing Bernoulli’s equation between m and n and n and p (Fig.
68). This matter is not of great importance in connection with
submerged orifices, since the discrepancy resulting from the use of
formula (18) is relatively small and the coefficient of discharge
which is determined from experimenis eliminates this source of
error.

The loss of head sustained at the outlet of a pipe discharging
into a body of still water is discussed in Art. 102. The conditions
of discharge in this case are
practically identical with
those of the submerged orifice
discussed above.

65. Partially Submerged
Orifices.—Fig. 69 represents
a rectangular orifice, the bot-
tom of which is submerged to
a depth D. The upper and
lower edges of the orifice are,
respectively, h; and kg below the upper water surface. Z is the
difference in elevation of water surfaces. L is the length of the

F16. 69.—Partially submerged orifice.
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orifice. The total discharge through the orifice is evidently the
combined discharge of the upper portion of the orifice discharging
into the air and the lower portion discharging ‘as a submerged
orifice.

The theoretical formula for discharge from this orifice is inter-
esting because of its relation to the submerged weir (Art. 79).
Let Q1 and Q2 be, respectively, the discharges from the free and
submerged portions of the orifice. Then from Art. 56, if C’ is
the coefficient of discharge for the upper portion

Q=3C'LV2Y(Z¥-n*), . . . . . ... . . (42

and by Art. 64, C"’ being the coefficient of discharge for the lower
portion
Q:=C"LV24Z(h2—2), . . . . . . . . . (43)

and the total discharge, Q, for the orifice is
Q=0Q1+Q2=LV2[§C"(Z% — h*)+C"VZ(h2— 2)), (44)
or since he—Z=D,
Q=LVC' (25— m*+C"DVZ]. . . . . (45)

Since the coefficient of discharge for an orifice with free discharge
is very nearly equal to the coefficient for a submerged orifice the
equation may be put in the approximately equivalent form '

Q=CLV2[3(Z*—n*)+DVZ]. . . . . . . (46)

If hy=0 the orifice is a submerged weir and equation (45)
becomes

Q=LV2(3C'Z%+C"DVZ). . . . . . . . 4D

The submerged weir is discussed in Arts. 79 and 80.

66. Gates.—As used in engineering practice gates are forms
of orifices. They may discharge freely into the air or be partially
or wholly submerged. Though the principles underlying the dis-
charge through orifices have been discussed in the preceding pages
they cannot be applied accurately to gates because of the fact that
gates do not ordinarily conform to the regular sections for which
coefficients are directly available.
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Fig. 70 illustrates a cross-section of a head gate such as is
commonly used in diverting water from a river into a canal. A
curtain wall extends between two piers, having grooves in which
the gate slides. The bottom of the opening is flush with the floor
of the structure. Such an opening has suppressed contraction
at the bottom, nearly complete contraction at the top and par-
tially suppressed contractions at the sides. Other equally com-
plex conditions arise. The selection of coefficients for gates is
therefore a matter requiring mature judgment and an intelligent
use of the few available experimental data. Even the most
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F1c. 70.—Headgate. F1c. 71.—Discharge under
falling head.

experienced engineers may expect errors of at least 10 per cent
in the coefficients which they select and to provide for this uncer-
tainty ample allowance should be made in designs.

67. Discharge under Falling Head.—A vessel is filled with
water to a depth h; (Fig. 71). It is desired to determine the time
required to lower the water surface to a depth ks through a given
orifice. A is the area of the water surface when the depth of water
is y and a is the area of the orifice. The rate of discharge at any
instant when the head is ¥, the coefficient of discharge being C, is

Q=CaV'2gy,
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and in the infinitesimal time, dt, the corresponding volume of
water which flows out is

dV =CaV'2gy dt.

In the same infinitesimal time the head will drop dy and the
volume of water discharged will be

dV=Ady.
Equating the values of dV
Ady=CaVogydt
or
Ady
= <, 48
CaV'2gy (48)

From this expression, by integrating with respect to y between
the limits A; and k2, the time required to lower the water surface
the amount (h;—h2) may be determined or the time of emptying -
the vessel may be obtained by placing hs =0, provided A can be
expressed in terms of y. For a cylinder or prism the cross-sectional
area, A, is constant and the formula after integration becomes

24 —
t=Ca \/2_9(\/h1—\/}72\. (49)

The above formulas apply also to vertical or inclined orifices,
provided the water surface does not fall below the top of the
_orifice. The heads ki and he are then measured to the center of
the orifice. The time required to completely empty a vessel
evidently can be determined only in the case of a horizontal
orifice.

Ezxample—Two chambers, 1 and 2 (Fig. 72), with vertical
sides, each chamber being 8 ft.
wide, are separated by a par-
tition. Chamber 1 is 25 ft.
long and chamber 2 is 10 ft.
long. At the bottom of the
partition is an orifice 1 ft. by
2 ft. The orifice is at all times Fia. 72,
submerged. The coefficient of
discharge is 0.85. At a certain instant the water surface is 10
ft. higher in chamber 1 than in chamber 2. After what interval
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of time will the water surfaces in the two chambers be at the
same elevation?

* Solution.—Let y be the difference in elevation of water surfaces
at any instant and dy be the change in the difference in elevation
of water surfaces in time dt. The amount of water flowing into
chamber 2 in time d¢ will be

dV =CaV2gydt=0.85X2X8.02Vydt=13.6Vydt.

Also in the same interval of time the head will drop 3% dy in
chamber 1 and rise 4§ dy in chamber 2. Then

_10X25X8 , 2000

av 35 dy= 35 ~dy.
Equating values of dV
13.6v/gdt =220y,
35
or
_4.20dy
Vy

Integrating between the limits 10 and 0 and reducing,
 ¢t=26.5 seconds.

PROBLEMS

1. A sharp-edged orifice, 2 in. in diameter, in the vertical side of a large
tank, discharges under a head of 16 ft. If C.is 0.62 and C, is 0.98 determine
the diameter and velocity of the jet at the vena contracta and the discharge
in cubic feet per second.

2. In Problem 1 how far from the vertical plane containing the orifice
will the jet strike a horizontal plane which is 6 ft. below the center of the
orifice?

8. A sharp-edged orifice, 3 in. in diameter, lies in a horizontal plane, the
jet being directed upward. If the jet rises to a height of 21.2 ft. and the
coefficient of velocity is 0.98, what is the depth of the orifice below the water
surface, neglecting air friction. The pressure ih the jet and on the surface
of the reservoir is atmospheric.

4. In Problem 3, if C,=0.62, what is the diameter of the jet 16 ft. above
the orifice?

5. If the orifice shown in Fig. 49, page 73, has a diameter of 2 in. and the
diameter of the vena contracta is 1.6 in. determine the discharge if k=36 ft.,
V=0, p4=9.7 lbs. per square inch, pp=1.3 lbs. per square inch and the
head lost is 0.8 ft.

6. A sharp-edged orifice, 4 in. in diameter, in the vertical wall of a tank
discharges under a constant head of 4 ft. The volume of water discharged
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in 2 minutes weighs 6352 Ibs. At a point 2.57 ft. below the orifice the center
of the jet is 6.28 ft. distant horizontally from the orifice. Determine C,, C,
and C.

7. Determine the theoretical discharge (neglecting velocity of approach)
from a vertical rectangular orifice 3 ft. long and 1 ft. high, the head on the
top of the orifice being 2 ft.

8. A standard short tube, 4 in. in diameter, discharges under a head of
20 ft. What is the discharge in cubic feet per second? In gallons per day?

9. If a }-in. hole is tapped into the standard short tube, referred to in
Problem 8, at a point 2 in. from the entrance, determine the discharge through
the tube, assuming the friction losses to remain the same.

10. If the upper end of a piezometer tube is connected with the 3-in. hole
referred to in Problem 9 and the lower end is submerged in a pan of mercury,
to what height will the mercury rise in the tube?

11. A Borda’s mouthpiece 6 in. in diameter discharges under a head of
10 ft. What is the discharge in cubic feet per second? What is the diameter
of the jet at the vena contracta?

12. Water is discharging through a gate 18 in. square. On the upstream
side the water surface is 5 ft. above the top of the gate and on the down-
stream side it is 2 ft. above. If the coefficient of discharge is 0.82, what is the
discharge in cubic feet per second?

18. A canal carrying 40 cu. ft. per second has a depth of water of 3 ft.
A structure is built across the canal containing a gate 2 ft. square, the bottom
of the gate being set flush with the bottom of the canal. If-the coefficient of
discharge is 0.85, what will be the depth of water on the upstream side of the
gate?

14 If, in Problem 13, the gate has a width of 3 ft. and it is desired to
increase the depth of water above the structure to 4 ft., what should be
the height of the gate, all other conditions remaining the same?

16. A 3-in. fire hose discharges water through a nozzle having a diameter
at the tip of 1 in. If there is no contraction of the jet and C,=0.97, the
gage pressure at the base of the nozzle being 60 Ibs. per square inch, what is the
discharge in gallons per minute? .

16. In Problem 15 to what vertical helght can the stream be thrown,
neglecting air friction?

17. In Problem 15, if it is desired to throw a stream to a vertical height of
100 ft., what must be the pressure at the base of the nozzle?

18. In Problem 15 what is the maximum horizontal range (in the plane of
-the nozzle) to which the stream can be thrown?

19. A fire pump delivers water through a 6-in. main to a hydrant to which
is connected a 3-in. hose, terminating in a 1-in. nozzle. The nozzle, for which
C.=1 and C,=097, is 10 ft. above the hydrant and the hydrant is 50 ft.
above the pump. What gage pressure at the pump is necessary to throw
a stream 80 ft. vertically above the nozzle?

20. A cylindrical vessel 4 ft. in diameter and 6 ft. high has a sharp-edged
circular orifice 2 in. in diameter in the bottom. If the vessel is filled with
water how long will it take to lower the water surface 4 ft.?

21. A tank, which is the frustum of a cone having its bases horizontal
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and axis vertical, is 10 ft. high and filled with water. It has a diameter of
8 ft. at the top and 3 ft. at the bottom. What is the time required to empty
the tank through a sharp-edged orifice 3 in. square?

22. A hemispherical shell, with base horizontal and uppermost, is filled

with water. If the radius is 8 ft. determine, the time required to empty
through a sharp-edged orifice 6 in. in diameter located at the lowest point.
. 28. A tank 12 ft. long has its ends vertical, top and bottom horizontal,
and is 6 ft. high. The top and bottom are rectangular, having widths of 8 ft.
and 5 ft., respectively. A standard short tube, 4 in. in diameter, is located
in one end near the bottom. If at the beginning the tank is full, find the
time necessary to lower the water surface 4 ft.

24. In the tank described in Problem 23 assume that there is a vertical
partition parallel with the ends and 5 ft. distant from one end. Near the
bottom of this partition there is a circular, sharp-edged orifice 4 in. in diameter.
If at the beginning the larger chamber is filled and the smaller- chamber con-
tains water having a depth of 2 ft., find the time required for the water
surfaces to come to the same level.

- .
SRR U B . . ) P &



CHAPTER VIII
FLOW OF WATER OVER WEIRS

68. Description and Definitions.—A weir may be described as
any notch of regular form through which water flows. This notch
may be in the side of a tank, reservoir or channel or it may be an
overflow dam with retaining walls at its ends. In general any
obstruction, having an approximately uniform cross-section, placed
in a channel so that water must flow over it is a weir.

The edge or surface over which the water flows is called the
crest of the weir. The overfalling sheet of water has been termed
the nappe.

Weirs may be classified in two ways, (a) with reference to the
shape of the notch and (b) with reference to the cross-sectional
form of the crest.

Rectangular weirs—that is, weirs having a level crest and
vertical sides, are the most generally used. Other weirs in more
or less common use, named from the shape of the notch or opening,
are triangular weirs, trapezoidal weirs and parabolic weirs.

Weir crests are constructed of many cross-sectional forms, but
they all come under one of the general headings, (a) sharp-crested
weirs, which are used primarily for the measurement of flowing
water and (b) weirs not sharp
crested which are used pri-
marily as a part of hydraulic
structures.

A sharp-crested weir is a
weir with a sharp upstream
edge so formed that water in
passing touches only this edge.
The nappe from such a weir
is contracted at its under side in the same way that the jet from
a sharp-edged orifice is contracted. This is called crest contrac-
tion. If the sides of the notch also have sharp upstream edges so

101

F1a. 73.—Sharp-crested weir.
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that the nappe is contracted in width the weir is said to have end
contractions. The nappe from a weir having a length equal to the
width of the channel suffers no contraction in width and such a
weir is said to have end coniractions suppressed. Fig. 73 is a
cross-section of a sharp-crested weir which illustrates crest con-
traction. Figs. 74 and 75 are views of weirs with end contrac-
tions. Fig, 76 shows a weir with end contractions suppressed.

F1a. 74 —Weir with end contractions.

There is a downward curvature to the water surface near the
weir crest (Fig. 73). This is called the surface contraction. The
head, H (Fig. 73), is the vertical distance from the water surface,
back of the effects of surface contraction, to the crest of the weir.
The curvature of the water surface is not perceptible beyond a
distance of about 2H upstream from the weir. The head is
usually measured at distances of 6 to 16 ft. upstream from the weir.
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The vertical coniraction of the nappe includes both the surface
contraction and the crest contraction. The section where the
effects of crest contraction disappear, corresponding to the vena
contracta of the jet, will be referred to as the contracted section of
the nappe.

- Imcomplete contraction of the nappe occurs when the crest of a
weir is 80 near the bottom, or the ends of a weir with end con-
tractions are so near to the sides of the channel, as to interfere with
the approach of the water filaments in directions parallel to the
face of the weir. The conditions are similar to those causing par-

-1
P

i“;

. F1a. 75.—Weir with end contractions.

tial suppression of the contraction of the jet issuing from an
orifice, discussed in Art. 57.

Weirs not sharp crested are constructed in a wide variety of
cross-sectional forms as is exemplified in the many shapes of over-
flow dams now in existence. Such weirs have surface contraction
" similar to sharp-crested weirs, but conditions at the crest are
different and vary with the sectional form (see Figs. 84 to 87).
A variety of cross-sections of weirs of this class are shown in
Fig. 88.

The term velocity of approach, as used in connection with weirs,
means the mean velocity in the channel just upstream from the
weir. The portion of the channel near where the head is measured
is designated the channel of approach. The height of a weir, P
(Fig. 73), is the vertical distance of the crest above the bottom
of the channel of approach.
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69. Velocity at any Depth.—Consider water to be discharging
over the weir crest A (Fig. 77). In the derivation of the funda-
mental formula it will be assumed that the water flows without
friction and also that there is no contraction of the nappe and
therefore no pressure within the nappe. In order to write a gen-
eral expression applicable to all filaments it will be necessary to
make the further assumption that all of the water particles in

F1a. 76.—Weir with end contractions suppressed. .

a cross-section of the channel of approach flow with the same
velocity. ’

From the nature of the discharge over weirs it is evident that
the water surface in the channel and the nappe must be subjected
to the same pressure from surrounding gases, which is usually
atmospheric pressure. All pressures excepting those resulting
from the weight of the water may therefore be neglected.

The flowing water may be considered to be made up of filaments
of which mn is one, m being a point in the channel of approach
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and n a point in the nappe, in the plane of the weir. The filament
passes over the weir at a distance y below the surface of the water.
The point m is a distance kn below the water surface and a distance
z below n. vn is the velocity at m and v, is the velocity at =.
Bernoulli’s equation may be written between the points m and n
as follows: .

”mz vuz
. .__+h —_—= (l)
and since hp—2=y
=”_"2_”_L'2 (2)
o7 D e e e e

and
v,.="29(y+v—2"§). O ()

These formulas express the theoretical relation between depth
and velocity for any point in the plane of the weir.

Introducing the assumption that all of the water particles in a
cross-section of the channel of approach flow with the same
veloclty, V; vm in formulas (2) and (3) may be replaced by v,
which gives

2 V2

Uy _r-

and

weA2(iHe) )

If the cross-sectional area of the channel of approach is very
much larger than the area of the notch, the velocity of approach
is small and V may be called zero. The depth, y, at Whlch the
velocity v, occurs is then from formula (4)

0.2 -
=== . . . . e e . . (6
= ®
and the theoretical velocity at a depth y, from formula (5) is
w=v2y. . . . . . . ...

70. Theoretical Formulas for Discharge.—Referring again to
Fig. 77, let an origin be assumed at O, a distance H vertically
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above the weir crest A. Formula (5) as derived in the preceding

article is
n.=\/2g(y+'—;). LB

This is also the equation of a parabola whose axis is the line OA
and whose intersection with the axis is at M, a distance L above

%
the origin. Assuming the curve MN to be the graph of the

ve

FiG. 77.

equation, the abscissa at any depth, y, is the theoretical velocity at
this depth.

Considering a unit length of weir, the area of an elementary
strip is dy and the theoretical discharge through this strip is

dQi=vdy. . . . . . . . . . . . . (8
Substituting the value of v, from equation (5)

dol=\/29(y+‘§’;)dy

a=vE [ i

and
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B (ot B

This formula expresses the theoretical discharge over a weir
1 ft. long, assuming uniform velocity in a cross-section of the
channel of approach, and neglecting the effects of friction and
contraction of the nappe. It evidently is also the area of the
surface OSN A (Fig. 77). |

As a matter of convenience the symbol & may be substituted

for ?g Making this substitution the theoretical discharge for a

weir of length L becomes

Q=4VQL(H+h%—h¥%,. . . . . . (10)
which formula may be transposed to the form
a %
Q;=g\/§LH%[(1+I—’;)”—(ﬁh) ] .. @y

In this form the term within the brackets is the factor which
corrects for velocity of approach. If the cross-septiona.l area of
the channel of approach is large in comparison with the cross-
sectional area of the nappe, the effect of velocity of approach will
not be appreciable and may be considered to be zero. The above
formulas then reduce to

Q=%VgLH% . . . . . . (12
which is the same as formula (27) (page 83).

This formula may also be derived directly from Fig. 77.
The area of the surface AOP which represents the discharge over a
weir 1 ft. long, being half of a parabolic segment, is equal to two-
thirds of the area of the circumscribed rectangle ORPA or
3HV'2gH. The discharge for a weir of length L is therefore
3LV2gH*, which is the same as formula (12).

71. Theoretical Formula for Mean Velocity.—Since formula
(9) which is the theoretical formula for discharge over a weir 1 ft.
long is also an expression for the area of the surface OSNA and
since the abscissas to this curve at any depth are the velocities
at the depth, the mean of the abscissas between O and A gives
the mean velocity of the water discharging over the weir. The
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mean velocity is therefore the area of the surface OSNA divided
by H, and the expression for theoretical mean velocity is obtained
by dividing formula (9) by H, which gives, after substituting h
for +-.

B N /A ST I

If the velocity of approach is considered to be zero, h also
becomes zero and the above formula reduces to

vw=4V2%H. . . . . . . . (19

Equating the right-hand members of equations (7) and (14) gives
the theoretical depth at which the mean velocity occurs, or

y=%H. . . . . . . . . (19

72. Weir Coefficients.—The assumptions which were made in
the derivation of formula (10) may be summarized briefly as follows:

(a) All water particles in a cross-section of the channel of
approach flow with the same velocity.

(b) There is no contraction of the nappe.

(¢) The water flows without friction.

Since these conditions do not in reality exist, it is necessary
to modify formula (10) and the formulas derived therefrom to make
them applicable to actual conditions. To accomplish this, three
empirical coefficients are applied to the formula, there being one
coefficient to correct for the difference between assumed conditions
and actual conditions for each of the above assumptions. The
method of correcting for each assumption will be discussed in the
order given above. ’

(a) Correction for mon~uniformity of velocity in cross-section of
channel of approach. The velocity in any cross-section of a channel
is never uniform. As a result of the combined effects of friction,
viscosity and surface tension (Arts. 7 and 110) velocities are
lowest near the sides and bottom of an open channel and, if the
channel is straight and uniform, the maximum velocity is below
the surface and near the center of the channel. If there are no
obstructions, velocities in a vertical line (Art. 110) vary approxi-
mately as the abscissas to a parabola. In the channel of
approach where a weir obstructs the flow, the law of distribution
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of velocities is not well understood and in cases where these
velocities have been measured they have been found to vary quite
irregularly. It is not practicable therefore to determine by
analysis the extent to which discharges over a weir may be affected
by the distribution of velocities in a cross-section of the channel of
approach, but the general effect may be seen by studying certain
“assumed conditions. .
Let the curve CMB (Fig. 78) represent any vertical distribu-
tion of velocities in the channel of approach for a strip of water

ANUAURRANNRNRNNNN NN -
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Fia. 78.—Velocities in channel of approach.

1 ft. wide. The velocity at any distance, y, above the bottom is v,
the total depth being d. The kinetic energy for this strip of water

18 .
B a— _w d .
KE—I 2gdy 2g£v3dy. N ¢ ()]

The kinetic energy for any distribution of velocities can be deter-
mined from this formula where v can be expressed in terms of y.

Three conditions of assumed velocities are illustrated in Fig.
78. Uniform velocities are indicated by the vertica) line EF.
Velocities decreasing uniformly downward with a bottom velocity
of zero are illustrated by the line DA. The line CM B illustrates
a parabolic distribution of velocities. As these three lines are
drawn, the mean velocity, V, is the same for each case.

For uniform velocities, v in equation (16) is constant and equal
to V., Substituting this value and integrating, there results

k=2 ... an

29
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For uniformly varying velocities, illustrated by the line DA
(Fig, 78) v=2V L. Substituting this value in equation (16) and

d
integrating
k=" ... a8
g9
which shows the kinetic energy for this distribution of velocities
to be twice as great as for uniform velocity.

It may be shown also by writing the equation of a curve
similar to CMB, v being expressed as a function of y, and sub-
stituted for v in equation (16), that the kinetic energy for this
distribution of velocities is about 1.3 times the kinetic energy for
uniformly distributed velocities.

Similarly for any variation in velocities in the cross-section of a
channel, it may be shown that the water contains more kinetic
energy if the velocity is non-uniform than if it is uniform.

In general, the kinetic energy contained in the water in the
channel of approach may be written

KE=aW.g, SRR (19)
in which « is an empirical coefficient always greater than unity,
and since velocity head is the kinetic energy contained in 1 lb. of
water (Art. 43) the general expression for velocity head due to

V2
velocity of approach is a5 or ah.

This expression should, therefore, be written for k in formula
(13), and calling »' the velocity after this correction has been

applied
smwa(E (@] . oo

(b) Correction for coniraction.—The ratio of the thickness of
the nappe at its contracted section to the head on the weir may be
called the coefficient of contraction, C.. This includes only vertical
contraction, a separate correction being required for weirs with
end contractions (see Art. 73). If ¢ is the thickness of the nappe
and H the head

C.,= or t=C.H,

L2
H
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and if » is the actual mean velocity in the contracted section of the
nappe, L being the length of the weir, the discharge over the weir is

Q=tLv=C.LHv. . . . . . . (21)

The average value of C. for sharp-crested weirs is about 0.635.
(c) Correction for friction. The velocity in the nappe suffers a
a retardation by reason of the combined effects of friction and
viscosity. The ratio of the actual mean velocity, v, to the velocity
v’, which would exist without friction, is called the coefficient of
velocity, Designating the coefficient of velocity by the symbol Cs,

C.=:—, or v=Cy,

substitutihg this value of v in (21)
Q=CC,LHY'. . . . . . . . (22

The average value of C, for a sharp-crested weir is probably about
0.98, the same as for a sharp-edged orifice.

Substituting the value of v’ given in formula (20), the formula
for discharge over a weir with the three corrective coefficients
becomes

\ % %
Q=?,\/2_gC,C.LH”[(l+%) - (‘-"—Hh> ] .. (23)

It is usual to combine 3v/'2¢C.C, into a single coefficient, C, called
the weir coefficient, then

C=3V2%CLr . . . . . . (2)

If C.=0.635 and C,=0.98, the values given above, C'=3.33,
‘which is an average value of this coefficient. It is the value adopted
by Francis as a result of his experiments on sharp-crested weirs.

Later experiments by Fteley and Stearns, and Bazin con-
sidered in connection with the Francis experiments, show quite
conclusively that C is not a constant. Its value appears to be repre-
sented quite closely by the expression

3.4
C'—""W.
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An investigation by Bazin gave the following value of C:

C=3.248+0'g—m§

With C substituted, formula (23) becomes

M\%  [ah\¥] - o

= 3 anN\T_ (2

Q=CLH [<1+H) ‘ <H> ] L @)
The expression within the brackets is the correction for velocity
of approach. When the velocity of approach is so small that the
head, A, due to this velocity may be considered zero, formula (25)
becomes

Q=CLH%. . . . . ... (20

Formula (25) includes coefficients which correct for all of the
assumptions which were made in deriving the theoretical formula
(10) for weirs with end contractions suppressed.

Formula (25) is often written in the equivalent form

Q=CL[(H+ah)*— («h)*]. PR (27)

73. Weirs with End Contractions.—The weir coefficient, C,
does not include end contractions. A separate correction must
therefore be applied to the above formulas to make them applicable
to weirs with end contractions. End contractions reduce the
effective length of a weir. Francis determined from his own
experiments that the effective weir length is reduced an-amount
equal to 0. 1H by each contraction. If L is the effective length of
the weir, L’ the measured length and N the number of contrac-
tions, from Francis’ determination (see Fig. 75) :

L=L'-0.1NH. . . . . . . (28

For two end contractions N=2. If contraction is suppressed at
one end N=1.

Some of the later experiments do not substantiate the results
of Francis, but no general formula better than the above has been
suggested. On account of uncertainty regarding the best method
of correcting for end contractions, where they can be properly
used, weirs with end contractions suppressed are preferable.

74. Modifications of Fundamental Formula.—In the form
given, formula (25) or its equivalent (27) is cumbersome and not
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convenient to use as a base formula. It is therefore seldom used
without modification. Francis adopted this formula without
correcting for non-uniform velocity in a cross-section of the channel
of approach, which gives « a value of unity, but this was before
experiments on - the effect of velocity of approach were available.

A common method of simplification is to simply drop the last
term of formula (27) using as the base formula

Q=CL(H+ah)¥%. . . . . . . (29

The value of the term (ah)* which is dropped is represented by
the area MOS (Fig. 77). The amount which the discharge is
affected by the term ah as retained is represented by the area
OSNP. These areas are purely illustrative as actual areas are
dependent upon values of H and V. By substituting numerical
values, however, it may be shown that within the range of con-
ditions occurring in practice, the simplified formula is nearly
equivalent to the original expression. It should also be noted
that a large portion of the error that would otherwise be introduced
by dropping the term (ah)* may be corrected in the selection of
coefficients. The present understanding of weir hydraulics and
the experimental data available for the determination of empi-
rical coefficients are not sufficient to’ justify too close an adherence
to fundamental formulas.

Equation (29) is not in a form convenient to use since » depends
upon V and therefore upon @ for its value. When Q is unknown a
formula of this form must be solved by first determining the
approximate value of @, neglecting velocity of approach (formula
26). From this value™of @ an approximate value of h may be
obtained, which substituted in the formula involving velocity of
approach correction gives a value of @ which is usually close
enough for the purpose. If a closer result is desired the compu-
tations may be repeated using this new value of Q for determin-
ing h. This formula may be modified by mathematical transfor-
mation so that terms depending upon Q for their value do not
occur on the right-hand side of the equation.

75. Algebraic Transformation of Formula.—The fundamental
formula as derived in Art. 72 is

Q=CLH%[(1+‘1_H")“_<°‘_H)“}... . (@)

‘-

/

/
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Expanding the left-hand term within the brackets by the binomial
theorem gives a diminishing series, and dropping the terms of
higher powers the equation becomes

Q=CLH%[1+%%+§(5-H">2. : —(%h)”] .. (30)

An expression approximately equivalent to the above is obtained
by dropping all of the terms within the brackets excepting the first
two, which gives

3ah
= % —_
Q=CLH (1+} 2H)' B 7))
As explained in the preceding article, the value of equation (30) is

. 3% .
changed but little by dropping the term (%) and since the sum
of the terms of the expanded series which are dropped is of oppo-

%
site sign and less than (g_Hh> , formula (31), is a closer approxima-
tion to the fundamental formula (27) than formula (29)..
It is now desired to eliminate k, which depends upon @ for its
value. By definition of velocity of approach,

%
V= §=Cij1— (approximately), . . . (32)

where A is the cross-sectional area of the stream in the channel of
approach. The value of Q as substituted is an approximation
since it does not include the velocity of approach correction.
It is to be applied, however, to a term which is itself a small
correction, making the error introduced by this approximation
relatively unimportant. Using this value of V

V2 _ C2L2H3
h=e = "ged? (33)
Substituting this value of & in formula (31) and reducing,
[ | 3aC2 /LH\2
= 3 —_— (==
o=crmn1+% (4)]' )

2
Replacing 3%? by a single coefficient, C';, the formula becomes

Q=G/}H%51+Cvl<%l>2]. B 1)
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This is a convenient base formula for discharge over weirs. Some
weir formulas are expressed in this form and most of the others
may be readily reduced to it. This form of formula provides a
direct solution for @ while other forms require a trial and error
method of correcting for velocity of approach. The values of
C and C; must be determined from experiments and at this point
rational reasoning must give place to empirical science.

76. Weir Experiments.—Working formulas are obtained by
determining experimentally the values of coefficients to be applied
to derived formulas as, for instance, C and C; in (35). Many
experiments, on sharp-crested weirs, covering a wide range of
conditions of flow, have been performed during the past century.
The most important of these are the experiments by Francis in
1852, those by Fteley and Stearns in 1877 and the Bazin experi-
ments in 1886.! There are soeme incensistencies in the results of
the various experiments, but in general they substantiate the cor-
rectness of the reasoning in the preceding pages and the base
formula derived thereby.

T7. Formulas for Sharp-crested Weirs.—A large number of
formulas for sharp-crested weirs have been published, but only
those best known or those appearing to possess the greatest merit
will be given.

The Francis Formula which is obtained by putting C=3.33
and a=1 in formula (27) is as follows:

PEREXS

Q=3 33L[(H+'h)‘” b ... (36)

Substituting C =3.33 and a=1 in (34) there is obtained the follow-
ing formula which gives results very nearly the same as
formula (36).

Q= 333LH%[1+0 26(121) ] ... @)L

This may be considered as another form of the Francis formula,
more convenient than the original, since it affords a direct solution

1J. B. Francis: Lowell Hydraulic Experiments (4th edition, 1883).
Also Trans. Amer. Soc. Civ. Eng., vol. 13, p. 303.. FrELEY and STEARNS:
Flow of Water over Weirs. Trans. Amer. Soc. Civ. Eng., vol. 12 (1883).
H. BaziN: Annales des Ponts et Chaussées, October, 1888. Translation by
MaricEAL and TRAUTWINE: Proc. Eng. Club, Phila., January, 1890. Also
Annales des Ponts et Chaussées for 1894, ler Trimestre,
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for Q, whereas the form (36) requires the trial method of solution.
The second term within the brackets is the velocity of approach
correction. When the velocity of approach is very small the term

2
0.26 (%i) may be neglected and the Francis formula reduces to

Q=3.33LH®. . . . . . . . (3

If there are end contractions the measured length of weir should
be corrected by formula (28).

The Fteley and Stearns Formula, based upon a study of their
own experiments and the experiments of Francis, is

Q=3.31L(H+4ah)*+40.007L, . . . . (39).

in which a=1.5 for suppressed weirs and 2.05 for weirs with end
contractions. Without velocity of approach correction h=0.
Formula (28) is to be used to correct for end contractions

The Bazin Formula.—The experiments on suppressed weirs by
Bazin covered a wide range of conditions. As a result of his
investigation Bazin devised a formula applicable to suppressed
weirs. As originally published, the Bazin formula is expressed in
metric units. His base formula is of the form of (35). The
value of coefficients which he derived (see Art. 72, page 111),
expressed in English units, may be written

C=3.248+- 707
and
C1=0.55.
Substituting these values in (35) the formula becomes
Q= LH%(a 248+ﬂ9) [1+0 55(1;1}1) ] )

It was not intended by Bazin that this formula should apply
to weirs with end contractions, though in the form given above
it can be so used, after correcting the measured length, L’, by
formula (28). Without velocity of approach correction the term
within the brackets becomes unity.

For suppressed weirs in rectangular channels where L equals
the width of the channel as well as the length of the weir and d
equals the depth of water in the channel of approach, the area of
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water section in the channel of approach equals Ld and formula
(40) becomes )
2
| Q=LH%<3.248+%’-9)<1+0.55%>. L. @)

In this form the Bazin formula applies more conveniently to sup-
pressed weirs. A

The King Formula ! is based upon a study of the experiments of
Francis, Fteley and Stearns, and Bazin, from which (see Art. 72,
page 111) values of

3.34

and
C1=0.56

were obtained. Substituting these values the formula becomes
2
Q=3.34LH"‘7[1+0.§6(I—;1§—1> ] ... (42)

This formula applies to weirs with and without end contractions.
If there are end contractions the measured length of weir is to be
corrected by formula (28). In rectangular channels where the
weir length equals the width of channel, and d equals the depth
of water in the channel of ‘approach, formula (42) reduces to

Q=3.34LH‘3!’M(1+0.5§§). N O

Without velocity of approach,
the term within the paren-
theses equals unity and the
formula becomes

Q=3.34LH,“7. . 44)

Falls (Fig. 79) may be - Fia. 79 —Fall.
considered as weirs having a
height of zero. In this case the head equals the depth of water,

1H. W. Kina: Handbook of Hydraulics, McGraw-Hill Book Co., p. 71
(1918).

RN

d

'
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and if the channel has vertical sides, H/d, formulas (41) and (43),
equals unity. These formulas then become, respectively,

Q=(5.04+(L%)LH%. T

and
Q=5.21LH*. . . . . . . . . . (46)

Both of these formulas lack experimental verification.

78. Discussion of Weir Formulas.—As is the case with all
empirical formulas, weir formulas are no more accurate than the
data upon which they are based. The three sets of experiments
(see Art. 76) on which the above formulas are based give results
which are somewhat conflicting so that no formula can agree with
them all. The formula of Fteley and Stearns being based largely
upon the results of their own experiments gives discharges some-
what less than the Bazin and King formulas which agree more
closely with the Bazin experiments.

The Francis formula is based entirely upon the Francis experi-
ments, which do not cover a wide range of conditions nor include
any measurements for a determination of the effects of velocity
of approach. As a result of this the Francis formula gives results
considerably in error for high velocities of approach. It has also
been found that the Francis formula gives too small discharges
for low heads. For these reasons the Francis formula should not
be considered as generally applicable to all conditions.

In general, formulas of the form of (35) which do not have
terms dependent upon Q on the right-hand side of the equation
are much more convenient to use than those of the form of (27)
or (29). There is nothing sacrificed in accuracy by using formulas
of the former type.

79. Submerged Weirs.—If the elevation of the water surface
in the channel below a weir is higher than the crest of the weir
the weir is said to be submerged or drowned. The water flowing
away from the weir is sometimes called the tail water. The chan-
nel below the weir is called the channel of retreat and the velocity
in this channel is the velocity of retreat. The depth of submergence
is the difference in elevation between the tail-water surface and
the crest of the weir. Other terms used correspond to those for
weirs with free overfall. '
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Fig. 80 represents a submerged rectangular weir. The head
is H and the depth of submergence D. The difference in elevation
of water surfacesis Z=H—D. The length of weir is L.

In Art. 65 a submerged weir is shown to be a special case of a
partially submerged orifice. The discharge may be considered as
the combined discharge of a weir whose crest is at the elevation of
the tail water and a submerged orifice, each discharging under a
head Z. Neglecting velocity of approach, the combined discharge is

Q=3C'VQLZ¥+C"V4LDVZ. . . . (47)
Writing C, for 2C’v/2g and C; for C"+/2g the formula becomes
' Q=L(C:Z%+C:DVZ). . . . . . . @48

F1a. 80.—Submerged weir.

From experiments by Fteley and Stearns and by Francis are
obtained values of coefficients which substituted in formula (48)
give the following formula for submerged weirs:

Q=LVZ(34Z+44D). . . . . . . (49)

This formula does not provide any method of correcting for
velocity of approach nor of making other corrections explained
below. Results obtained by formulas of this type must be con-
sidered very approximate excepting for weirs that nearly duplicate
the conditions of the original experiments. .

Some investigators have considered C’ and C”, formula (47),
to be of the same value—that is, they have considered the crest
contraction to equal the surface contraction. If C’ and C’ are
made equal, equation (47) may be reduced to the form

Q=CL\/Z(H+22>.. C . (B0)
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This is the formula adopted by Fteley and Stearns. Accompany-
ing the formula they give a table of values of C varying from
3.372 to 3.089 for different values of D/H. Since formula (50)
requires an accompanying table of coefficients, it is not as con-
venient as formula (49) and possesses no advantages from con-
siderations of accuracy.

80. Further Discussion of Submerged Weirs.—The dlscharge
over submerged weirs is affected by veloclty of approach in a
manner very similar to the discharge over weirs with free overfall,
but as the formula is more complicated, the application of a
velocity of approach correction is more difficult. If in deriving
formula, (45) (page 95) the head is increased by an amount ah
to correct for velocity of approach and the distance from the top
of the orifice to the water surface is made zero the following formula
is obtained:

Q=3C'LV2((Z+ah)**— (@h)¥|4+-C"LV2g(Z+ah)*(H~Z). (51)

This formula is complicated and is not reducible to a form permit-
ting of simple application to submerged weir problems. With the
limited experimental data available it is not possible to obtain
values of the coefficients C’, C"’ and a with any degree of accuracy.
There are required, moreover, other corrections, largely empirical
in character which if applied to the above formula will still further
complicate it.

The discharge over a submerged weir is greatly affected by
conditions in the channel below the weir. Water flows over the
crest of the weir at a velocity which is usually higher than the
normal velocity of the tail water and a portion of this velocity is
retained temporarily after leaving the weir. Where the slope of
the channel is not sufficient to maintain this high velocity there is
a piling-up effect just below the faster-moving water. This condi-
tion is illustrated in Fig. 80. The water has a higher velocity
at a and a lower velocity at b than the normal velocity in the
channel. This condition produces what is known as the standing
wave, a being the trough and b the crest of the standing wave.
Below the main wave a series of smaller waves form, which gradu-
ally reduce in size and finally disappear.

The factors affecting the height of the standing wave are not
well determined, but from a purely empirical investigation it
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appears to increase directly as the square root of H, D and Z
(Fig. 80) and inversely as the square root of d;. The depth of
submergence, D, is one of the terms entering into submerged weir
formulas and its value should be accurately determined. Theo-
retically, it is the depth, D;, in the trough of the standing wave,
that is to be used in formula (47), but usually it is the depth of
submergence at D, below all turbulence caused by water flowing
over the weir that is most easily measured and most convenient to
use in submerged weir problems.

The only experiments on submerged weirs that furnish any data
relative to the effect of velocity of approach and channel conditions
below the weir are the experiments by Bazin. Two formulas for
submerged rectangular sharp-crested weirs without end contrac-
tions which accord very well with the results of the Bazin experi-
ments are given below. These formulas are largely empirical in
character and a discussion of their derivation is not given. The
symbols used are indicated in Fig. 80. The submerged weir
formula by Bazin ! may be written

0.79 H? D\ 3|Z
Q= LH“<3 248+ —— ><1+0.55a—2-> (1'05+0'21?>\/;‘ (52)

The submerged weir formula by King 2 is

Q=3. 34LZ“7(1+0 56d2><1+ HD)(1+1 2D) . (53)

Each of the above formulas will require further experimental
verification before it can be considered applicable to all conditions.
81. Triangular Weirs.—

- l< .
Fig. 81 represents a trian- A\ ©
gular notch or weir over NG — Y/ T
which water is flowing. The dy H

measured head is H and I

the distance between the . )

gides of the weir at the Fia. 81 —Triangular weir.

water surface is I. The sides make equal angles with the vertical.
The area of an elementary horizontal strip dy in thickness is

1 Annales des Ponts et Chaussées for 1898, ler Trimestre, p. 235.
? Handbook of Hydraulics, p. 82.
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Udy. Neglecting velocity of approach, the theoretical velocity
through this strip for a head y is V2gy and the theoretical

discharge is
dQ,=1'V 2gydy
from similar triangles

Combining the two equations
— NV
dQ=1vg TPV gy,

integrating between the limits H and 0 and reducing,
Q=5 2glH%. N (/)

The slope which the sides of the weir make with the vertical may
be represented by z, then

%l=z or 1=2H. . . . . .. (3)
Substituting this value of I in (54) the theoretical formula for
discharge, expressed in terms of head and slope of mdes, is,

Q=1V2:H%. . . . . . . . (5)

Applying a coefficient of discharge and combining it with the
constant terms the same as for rectangular weirs
Q=CzH», . . . . . . . . . (8
in which the value of C must be determined experimentally.

If the angle between the sides is a right angle, z equals unity.
Most of the available experimental data are for right-angled
notches. Triangular weirs having other angles are seldom used.
Experiments indicate quite clearly that C is not a constant, its
value decreasing with increasing heads.

The following are values of C as obtained from various sets of
experiments ! together with corresponding formulas for sharp-

! Pror. JaMEs THoMPsON: Experiments on Triangular Weirs. British
Association Reports, 1861. James Barr: Flow of Water over Triangular
Notches. Engineering, April 8 and 15, 1910. H, W, KiNe: Handbook of
Hydraulics, p. 86, 1918,
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edged, right-angled, triangular weirs. From Thompson’s experi-
ments

' C (mean)=2.54 Q=2.54H%.. . . . (58)
From Barr’s experiments;
C= 2.48

o Q=2.48H%**, . . . (59)

From experiments at the University of Michigan;

c=257  Q=2.52HM. . . . (80)

Other experiments on triangular weirs give results varying some-
what from those listed above.

One interesting fact brought out by Barr’s experiments is that
the discharge over a sharp-edged, metallic, triangular weir may be
2 per cent greater when the inner face of the metal is rough than
when it is smooth. The rougher face, by retarding the movement
of water parallel to it, reduces the velocities which have the greatest
influence on contraction, thus reducing the contraction and so
increasing the discharge.

The effect of velocity of approch on triangular weirs is similar
in character to the effect on rectangular weirs. No data for
determining coefficients are, however, available. From the nature
of the triangular weir the cross-sectional area of the nappe is usually
very much smaller than that of the channel of approach. The
velocity of approach is therefore small and the error introduced by
neglecting it is usually inappreciable. This has been confirmed
experimentally by Barr.

The triangular weir affords an excellent method of measuring
small discharges. Formula (59) probably applies more accurately
to sharp-edged notches cut in very smooth metal and (60) to
sharp-edged notches cut in rougher metal, such as ordinary com-
mercial steel plate.

For angles slightly greater or less than 90° it is probable that
the values of C listed above, if substituted in formula (57), will
give quite accurate results.

82. Trapezoidal Weirs.—Fig. 82 represents a trapezoidal
weir having a horizontal crest of length L. The sides are equally
inclined, making angles a/H =z with the vertical.
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By writing the equation

dQ=lV2gydy
and expressing ' in terms of
= and known quantities in a

I
[1]
[
|

manner similar to that used
for triangular weirs, and in-
tegrating and reducing, the
following formula for the the-
oretical discharge over trape-
zoidal weirs without velocity of approach correction can be
obtained:

F1a. 82.—Trapezoidal weir.

Q=3V2LH*+£V2zH”. . . . . (61)

The same formula is obtained directly by the addition of the
theoretical discharges over rectangular and triangular weirs.
With coefficients included the formula for discharge may be written

Q=C.LH®+CozH*. . . . . . (62

There are no experimental data for the determination of C; and C2
and for this reason the trapezoidal weir has little practical value.
’ 83. The Cippoletti Weir.—A trapezoidal weir, having a value
of z=a/H (Fig. 82) of 1, is called a Cippoletti! weir. This slope
of the sides is approximately that required to secure a discharge
through the triangular portion of the weir opening that equals the
decrease in discharge resulting from end contractions. The
advantage of the Cippoletti weir is that it does not require a
correction for end contractions. The method employed by
Cippoletti in arriving at his value of z is as follows:
The discharge through the triangular portion of the weir,
C’ being the coefficient of discharge, is

Q=15C"V2gzH".
The decrease in discharge resulting from end contractions, C”
being the coefficient of discharge, according to Francis is

Q=3C"v250.2H",

Equating the right-hand members of these equations, assuming
C’ to equal C”, and reducing, there results

z=% . . . . . . . . (63
1C. CreroLETTI: Canal Villoresi (1887). Description of trapezoidal weir.
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The formula given by Cippoletti for determining the discharge
over Cippoletti weirs is

Q=3.367LH*, . . . . . . (64)

to be corrected for velocity of approach by the Francis method.
Later experiments indicate that this formula gives too great dis-
charges for the higher heads when the velocity of approach is low.
The Cippoletti weir is used quite extensively in western United
States for measuring irrigation water where precision in measure-
ment is not essential.

84. Weirs Not Sharp Crested.—Weirs having cross-sections
such that they partially or completely suppress contractions at the

Fig. 83.—Weir with rectangular  Fia. 84.—Weir with rectangular cross-
cross-section, Nappe springing section, Nappe adhering.
clear.

F1c. 85.—Weir with rounded crest.  F1a. 86.—Weir with Ogee cross-section.

crest are used frequently in hydraulic structures. Spillway sec-
tions of dams are examples of this type
of weirs. Such weirs also may be used
as a means of measuring water if
coefficients for the particular shape of
weir are available.

Figs. 83 to 88 illustrate various
cross-sections of weirs. Figs. 83 apd Fic. 87 —Weir with triangular
84 have rectangular sections with cross-section.
sharp upstream corners. If the
breadth of weir, b (Fig. 83), is about 3H or less the nappe

sl
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Directions of flow, left to right —

F1G. 88.—Various sections of weirs and dams.



WEIRS NOT SHARP CRESTED 127

HortoN’s VALUES oF WEIR CoEFFICIENT, C. (See Fig. 88)

Heap 1N FEeT, H
Cross-section

0.5(10(1.5/2.0|2.5/3.0|3.5[{40)|4.5]|5.0
A ... 3.46| 3.45( 3.42| 3.35 3.32| 3.33| 3.37| 3.41| 3.44
B ..o 3.43( 3.39| 3.38| 3.38 3.39| 3.40
c ... 3.26 3.28 3.32| 3.38| 3.47| 3.53| 3.59( 3.63| 3.66
D 3.29| 3.29| 3.32| 3.36| 3.40| 3.43| 3.48 3.53| 3.62| 3.72
E 3.27| 3.38| 3.46| 3.51] 3.55| 3.58 3.61| 3.67| 3.74| 3.83
F 3.15| 3.45) 3.63| 3.75 3.82| 3.87| 3.88( 3.88|
(¢] 3.18{ 3.30| 3.38( 3.42| 3.46| 3.49| 3.52| 3.53
H 3.28] 3.50| 3.54| 3.52| 3.36| 3.31] 3.30 3.30
I 3.18| 3.27| 3.43| 3.52| 3.59| 3.64| 3.68( 3.70
A N P 3.44| 3.35) 3.30 3.32| 3.37| 3.38| 3.39| 3.39
K  |..... 3.12( 3.20] 3.22| 3.22| 3.22| 3.22| 3.22( 3.22| 3.22
L 3.12( 3.14] 3.10| 3.14] 3.20| 3.26| 3.21( 3.36
M ... 3.80
N 3.10| 3.10/ 3.33,
o 3.53| 3.54| 3.54] 3.49| 3.35| 3.27| 3.25| 3.25
P |..... 2.81) 2.81| 2.81 2.81) 2.81| 2.81| 2.81| 2.81| 2.81
Q 3.49( 3.50| 3.52
R |..... 3.72| 3.82| 3.85| 3.82( 3.76| 3.68| 3.68| 3.73| 3.82
S | 3.58| 3.56| 3.57| 3.58| 3.60| 3.62| 3.65| 3.68
T 2.70| 2.64| 2.64] 2.70| 2.80| 2.89
U 2.72 2.64| 2.64] 2.64| 2.64| 2.64
14 2.72| 2.63; 2.63; 2.63| 2.63| 2.63| 2.63| 2.63| 2.63 2.63

will spring clear of the downstream edge and there will be com-
plete crest contraction. In this case the discharge will be given
by the formula for sharp-crested weirs. If the breadth, b, is
such that the nappe does not spring clear, as is indicated in
Fig. 84, the free fall of the nappe is interfered with and the dis-
charge is less than that of a sharp-crested weir. In Fig. 85 the
upstream edge of the weir is rounded, which reduces crest con-
traction and thereby increases the discharge. By proper d-sign
the crest contraction may be reduced very nearly to zero.
The base formula commonly used for weirs not sharp crested
(see Art. 72) is
Q=CLH*, . . . . . . . (26)

in which C is a coefficient varying with H whose value must be
determined at different heads for each shape of crest.
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After a thorough investigation Horton! has prepared tables
and curves of C, corresponding to different heads, for practically
all shapes of weir sections for which experimental data are avail-
able. In computing the values of his coefficients Horton assumed
the velocity of approach correction given by the formula

o-cr(H+y )" (65)

\ )
This formula is obtained from formula (27) by giving a a value
of unity and dropping the last term. The correction is doubtless
too small, but since it was used in reducing the experimental data
it should be applied in weir problems where Horton’s coefficients
are used. By substituting =1 in equation (34) and reducing
there is obtained
LH\?2

Q=CLH%[1+0.02402(-Z-> ], . . . . (66)
which gives results practically equivalent to (65) and is more
convenient to use. :

Fig. 88 shows various sections of weirs and dam crests for
which experimental data are available. The table on page 127
gives Horton’s values of C for these shapes.

The degree of accuracy which may be expected from the use
of weirs not sharp crested depends upon the experimental data
available for determining C. Inasmuch as there are innumerable
shapes that may be used, it is not probable that experimental
data for any large number of them will be secured for many
years. Complete data for any particular shape of weir requires
an exhaustive research similar to that required for sharp-crested
weirs. The data at present available are, however, sufficient to
assist in the selection of approximate coefficicats for the shapes
of weirs commonly used in hydraulic design.

Weirs not sharp crested, having cross-sections similar to the
shapes for which experimental values of coefficients are available,
may be used for the approximate measurement of discharges.
There are some cross-sectional forms which might be more satis-
factory for the measurement of flowing water than sharp-crested
weirs if as complete experimental data for them were available.

1RoBertT E. HorronN: Weir Experiments, Coefficients and Formulas.
Water Supply and Irrigation Paper, No. 200, U. S. Geol. Survey (1907).
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Existing dams frequently may be used for estimating flood
discharges of streams where direct measurements of discharge by
other methods are impracticable.

86. Broad-crested Weirs or Chutes.—A weir havmg a broad
flat top such as is illustrated in Fig. 89 is called a broad-crested
weir. A broad-crested weir is usually understood to be a weir
having an approximately rectangular cross-section with a width
of top, b (Figs. 84 and 89) great enough to prevent the nappe
from springing clear of the top of the weir. Fig. 89 may also
be considered to represent a longitudinal section of a chute,
that is, a short channel discharging from a body of comparatively
still water. The chute bears a relation to the weir analogous
to the relation of the short tube to the orifice (page 85). A

F16. 89.—Broad-crested weir.

rational derivation of a formula for discharge over broad-crested
weirs or chutes is given below.

There will be a drop, h, Fig. 89, in the water surface near
the upstream edge of the crest. The velocity of water below
this drop is that due to the head, h, or

= Cu Vv 2gh,

where v is the mean velocity and C, is the coefficient of velocity.
If the top of the weir is level or has a very gentle slope the depth,
d, will remain very nearly constant from the place where h is
measured to the lower edge of the crest. With a greater slope
of crest the velocity will accelerate and d will gradually decrease
toward the lower edge of the crest. The discharge will not,
however, be materially affected by the slope of the crest, pro-
vided it is sufficient to maintain the velocity v, since, as is shown
below there is a maximum discharge which can not be exceeded.
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If L is the length of weir or width of chute, the area through
which water is discharging under a head, A, is

a=Ld=L(H—h).

The mean velocity is that due to the head, k, multiplied by the
coefficient of velocity C,, and the discharge is

Q=C,L(H-m)V2h.. . . . . . (67)

The coefficient of contraction is unity and C,, therefore, is also
the coefficient of discharge.

In this equation Q=0 when A=0 and also when h=H.
There is therefore an intermediate value of A which makes Q a
maximum. This maximum value of @ can be obtained by
differentiating and equating to zero, which gives

dQ H—h_ _
a=CVL(G 7= VE) =0,
whence,
h=3H. . . . . . . . . . . . (68
Substituting this value of & in equation (67) and reducing gives
Q=3.087C,.LH%. . . . . . . (69

The coefficient, C,, is similar in-character to the coefficient of
velocity for a standard short tube, Fig. 60. Its value depends
upon the shape of the upstream edge of the crest and probably
approaches a maximum value of about 0.98 when this edge is
so rounded as to prevent contraction. Formula (69) may also

be written
Q=CLH%, . . . . . . . (26)

which is the base formula for weirs not sharp crested.

From experiments on broad-crested weirs it has been found
that for weirs having a breadth of 10 ft. or more, discharging
under a head of 1.0 ft. or more,

Q=263LH%, . . . . . . . (10

which corresponds to a coefficient, Cy, in formula (69) of 0.85.
If there are end contractions a separate correction must be
applied to the length.
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Formula (69) is of fundamental importance in connection
with the entrance conditions for open channels. It gives the
maximum rate at which water can be drawn through an open
channel from any body of comparatively still water. The rate
of discharge may be less but it can never be more than that
given by the formula (see Art. 126).

86. Measurement of Head.—In using weirs to measure the
rate of discharge, the head, length of weir and cross-sectional
area of the channel of approach must be carefully measured.
The last two of these usually need to be measured but once and
can then be used in all subsequent determinations of Q.

The head is measured with some form of a gage which is set
in a fixed position. The elevation of the zero of
the gage with reference to the crest of the weir
should be accurately determined. It is preferable
to measure the head in a well or stilling box con-
nected to the channel by a small pipe, the end of
which is flush with the side of the channel. This
provides a means for measuring the head in still
water and reduces the effect of waves which are
usually present in the channel of approach. For
the most precise work a hook gage should be used.

The hook gage, Fig. 90, consists of a graduated
metallic rod with a pointed hook at the bottom
which slides vertically in fixed supports. By means
of a vernier attached to one of the supports, read-
ings to thousandths of a foot may be taken. The
rod usually has a range of movement of about
2 ft. The gage should be rigidly attached to a
support at such an elevation that the movement
of the hook covers the range of water surface eleva-
tions to be read. To take a reading, the point of
the hook is lowered below the surface and then
slowly raised by the screw at the top of the instru-
ment. Just before the point of the hook pierces
the skin of the water, a pimple is seen on the Fic. 90.
surface; the hook is then lowered slightly until the Hook gage.
pimple is barely visible and the vernier is read.

Where less precision is required, especially for securing ‘con-
tinuous records of elevation as in ordinary stream gaging work,
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some other form of gage is desirable. An ordinary staff gage,—
that is, a painted rod graduated to feet and decimals of a foot
so set that the water surface comes in contact Wlth the gradua-
tions—is quite satisfactory in some cases.

There are a great many different types of recording gages
which give continuous records of water-surface elevation. These
gages either provide a record by a graph, the coordinates of which
indicate the time and stage, or by a device that prints elevations
at stated intervals of time. The essential parts of a recording
gage are: a float which rises and falls with the surface of the
water, a device for transferring the vertical motion of -the float
to the record, a recording device, and a clock.

Another device for determining head is a plummet attached
to the end of a steel tape. This is used to measure the vertical
distance from a fixed point above the channel of approach to the
water surface. The reading of the tape when the point of the
plummet is at the elevation of the crest of the weir is first deter-
mined accurately and the difference between this reading and
the reading when the point just touches the water surface gives
the head on the weir. This method gives accurate results, but
for precise work it probably is preferable to measure the head in
a stilling box with a hook gage, so as to conform to the conditions
of the experiments upon which weir formulas are based.

The head always should be measured far enough upstream
from the weir to be well above the effects of surface contraction.
In their experiments, Francis, and Fteley and Stearns measured
heads 6 ft. and Bazin 16.4 ft. upstream from the weir. The
distance selected should preferably conform approximately to
that used in the experiments on which the formula to be used in
computing discharges is based, though accurate comparaiive
measurements show an almost imperceptible difference between
heads measured 6 ft. and those measured 16.4 ft. from the weir.

87. Conditions for Accurate Measurement over Sharp-crested
Weirs.—To obtain maximum accuracy the face of the weir
should be vertical and the crest level. The crest should be cut
from plate metal, true to line with a flat top and sharp upstream
corner.

Suppressed weirs having a length equal to the channel width
have a space below the nappe which may have no connection
with the outside air. In passing over this space the nappe
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carries with it all or a portion of the entrapped air, thus reducing
the pressure underneath and causing the nappe to be depressed.
This is equivalent to reducing crest contraction making . the
usual formulas inapplicable. The space under the nappe,
therefore,  should be connected by pipes or by other means with
the outside air.

In general all conditions such as dimensions of weir and
channel and ranges of head should conform as nearly as prac-
ticable to the conditions of the experiments which form the basis
of the formula that is to be used in computing discharges. The
length of the weir should be at least three times the measured
head. Heads less than 0.2 ft. are undesirable since very low
heads create a tendency for the nappe to adhere to the weir
crest thus affecting the coefficient of contraction. Though it has
not been definitely proved, it appears from rather limited experi-
mental data that weir formulas apply as accurately for heads
up to 4 ft. as for lower heads.

Weirs with end contractions should have their ends at a
distance of at least two times the head from the sides of the
channel in order to insure complete contraction.

PROBLEMS

1. A sharp-crested weir 4 ft. high extends across a rectangular channel
12 ft. wide. If the measured head is 1.22 ft., determine the discharge, using
formulas (36), (37), (40) and (42).

2. Solve Problem 1, changing the height of weir to 2 ft. and the measured
head to 1.54 ft.

8. Solve Problem 1, changing the height of weir to 2 ft. and the measured
head to 0.25 ft.

4. What length of weir should be constructed in a stream 100 ft. wide
so that the measured head will be 1.50 ft. when the discharge is 120 cu. ft.
per second?

6. A rectangular channel 20 ft. wide has a 3-ft. depth of water flowing
with a mean velocity of 2.45 ft. per second. Determine the height of sharp-
crested suppressed weir that will increase the depth in the channel of approach
to 5 ft.

6. A sharp-crested weir 2.5 ft. high is built across a rectangular flume
30 ft. wide. The measured head is 1.25 ft. In the flume is another sharp-
crested weir having a height of 3.5 ft., the.middle of the weir being on the
center line of the flume. If the measured head on the latter weir is 1.62 ft.
what is the length of crest?

7. A rectangular, sharp-crested weir is to be consructed in a stream in
which the discharge varies from 2 cu. ft. per second to 50 cu. ft. per second.
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Determine a length of weir, such that the measured head will never be less
than 0.2 ft. nor greater than one-third of the length of weir.

8. Determine the discharge over a right-angled, triangular weir if the
measured head is 1.82 ft.

9. The discharge over a right-angled, triangular weir is 7.28 cu. ft. per
second. What is the measured head?

10. A channel is carrying 10 cu. ft. per second of water. Assuming that
an error of 0.005 ft. may be made in measuring the head, determine the
percentage of error resulting from the use of a right-angled, tnangular weir,
and also from the use of a rectangular weir 10 ft. long.

11. The measured discharge over a dam 100 ft. long is 520 cu. ft. per
second when the head is 1.28 ft. Determine the weir coefficient for this
head.

12. If in a certain channel the velocity varies uniformly from 3 ft. per
second at the surface to 1 ft. per second at the bottom, determine the corre-
sponding value of a.

13. An overflow masonry dam is to be constructed across a stream.
The stream is estimated to have a maximum flood discharge of 30,000 cu. ft.
per second, when the elevation of water surface at the dam site is 1132.0.
Six sluice gates each 8 ft. high and 6 ft. wide (C =0.85) are to be constructed
in the dam with their sills at elevation 1122.5. The main overflow weir for
which C'=2.63 will be 200 ft. long with a crest elevation of 1184.0. An
auxiliary weir 600 ft. long with a crest elevation of 1185.3 will operate during
floods. For this weir C=3.40. With all sluice gates open what will be the
elevation of the water surface upstream from the weir when the discharge
is 30,000 cu. ft. per second? Neglect velocity of approach.

14. A submerged sharp-crested weir 2.5 ft. high extends clear across a
channel having vertical sides and a width of 10 ft. The depth of water in the
channel of approach is 4.0 ft., and 35 ft. downstream from the weir the depth
of water is 3.0 ft. Determine @ by formulas (52) and (53).

16. A channel 20 ft. wide with vertical sides is carrying 400 cu. ft. per
second of water at a depth of 4.0 ft. How high a sharp-crested weir should
be constructed across the channel to raise the elevation of the water surface
0.5 ft.?



CHAPTER IX
FLOW OF WATER THROUGH PIPES

88. Description and Definitions.—As the term is used in
hydraulics, a ptpe may be defined as a conduit which carries
water under pressure. More commonly pipes are of circular
cross-section, and hydraulic formulas for the flow of water through
pipes are usually expressed in a form particularly adaptable to
circular pipes, but. the same general laws apply regardless of the
cross-sectional shape of the pipe.

Pipes which do not flow full or which flow full without exerting
pressure against the top of the pipe are classed as open channels
and are treated in a separate chapter (Chapter X). A city
water main carries water under pressure and is therefore an
example of a pipe while a sewer which normally does not carry
water under pressure is classed as an open channel.

Since friction losses in pipes are independent of pressure
(Art. 96) the same laws apply to the flow of water both in pipes
and open channels, and the formulas for each take the same
general form. Some formulas are designed to be used either for
pipes or open channels, but the more common practice is to use
different formulas for the two classes of conduits.

89. Wetted Perimeter and Hydraulic Radius.—The wetted
perimeter of any conduit is the line of intersection of its wetted
surface with a cross-sectional plane. Thus for a pipe flowing
full, d being the diameter, the wetted perimeter is equal to the
circumference or =d, if lowing half full it is 3=d.

The hydraulic radius of a conduit is the area of a cross-section
of the stream divided by the wetted perimeter of that section.
For a circular pipe flowing either full or half full the hydraulic
radius, 7, is evidently d/4 or R/2, R being the radius of the pipe.

The terms wetted perimeter and hydraulic radius are used
more generally in connection with open channels than with
pipes, but they are sometimes used in pipe formulas. Their
application to open channels is discussed in Art. 109.

135
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90. Critical Velocities in Pipes.—Under the conditions ordi-
narily encountered in hydraulic practice, water flows through
pipes with a turbulent motion, that is, the water particles have
a transverse as well as a longitudinal motion, and any particle
near the center of the pipe at one time may be near its sur-
face an instant later, occupying successively various trans-
verse positions, while it is at the same time being propelled
forward.

Though at any instant the water particles in a pipe where
turbulent motion exists move forward with different velocities
(Art. 91), the average longitudinal velocity of every particle is
approximately the same. This may be shown by suddenly in-
jecting a colored liquid into a pipe and observing the coloring
matter where it discharges from the pipe. It will be observed
that the coloring matter remains in a short prism even after the
water has traveled a distance of 1000 diameters or more and that
the water on cither side of this prism is comparatively clear.
This principle is made use of in measuring the velocity of flow
through pipes.

At comparatively low velocities, water may be made to flow
through small pipes without turbulence, that is with stream
line motion. Under these conditions the water particles all
flow in paths parallel to the axis of the pipe. The particles near
the axis then flow with a higher velocity than the other particles,
the velocities gradually becoming less as the distance from the

- center of the pipe increases, the lowest velocity being near the
surface of the pipe. This retardation of velocities is caused by
the viscosity of the water and friction between the moving water
and the pipe.

The flow of water in small glass tubes has been studied experi-
mentally by Reynolds! in the following manner. Water was
drawn through the tubes from a glass tank in which the water
had been allowed to come to rest, arrangements being made to
introduce threads of colored water into the entrance of the tubes.
Reynolds found, when the velocities were sufficiently low, that
the streak of color extended as a beautiful straight line through
the tube. As the velocity of the water was increased by small
stages, a velocity was finally reached where the color suddenly

1 OsBORNE REYNOLDS: Phil. Trans. Royal Society, 1882 and 1895.
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mixed with the surrounding water. The velocity at which
mixing began was evidently the velocity at which stream-line
motion ended and turbulent motion began. It has been termed
the higher critical velocity.

Reynolds also found that below a certain limiting velocity,
when the water was disturbed it soon resumed stream-line motion
but when the velocity was above this limit and the water was
disturbed, even though stream-line motion had existed before
the disturbance, turbulent motion occurred and stream-line
motion could not be established. This limiting velocity is called
the lower critical velocity.

The conditions of flow in a pipe 1 in. in diameter are illustrated
in Fig. 91. The line OA repre-
sents a gradual increase in

velocity. If the water is not - i"/ ‘4
disturbed, stream-line motion y./4
will continue until a velocity A

somewhat greater than 3 ft. per ;[ =m)
second has been reached. Above
this velocity the flow will always -?

be turbulent. If now the water, "; P
starting with turbulent motion, i‘

is gradually decreased in velocity ,}*

as indicated by the line AB, [ Lower Criiont Velosty (KPipe)
turbulent motion will continue

until the velocity is reduced to o T T —— B
about 0.5 ft. per second. Below Fig. 91.

this velocity stream-line motion

will always exist.

In general, it may be stated that for any pipe carrying water
of a constant temperature:

(a) There is a certain velocity (the lower critical velocity)
below which stream-line motion always exists.

(b) There is a certain velocity (the higher critical velocity)
above which turbulent motion always exists.

(c) Between the lower critical velocity and the higher critical
velocity the motion may be either stream-line or turbulent,
depending upon the initial condition of flow.

Reynolds found that the critical velocity varied inversely as
the diameter and directly as the viscosity of the water, the latter
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being a function of the temperature, or expressed empirically,
the lower critical velocity is

0.0388P
= :8,..........(1)

and the higher critical velocity is

0.246P
= d y o e e e o e e e o o (2)

d being the diameter of the pipe in feet and

1

P=itoosaTsoo00e> - - -+ ®

being a viscosity coefficient in which 7 is the temperature in
degrees Centigrade. ,

The following are critical velocities in feet per second obtained
from the above formulas for pipes of different diameters at a
temperature of 20° C. or 68° F.

% in. 1in. 2 in. 4 in. 6 in. 12in.
Lower...... 0.53 0.26 0.13 0.07 0.04 0.02
Higher. . ... 3.35 1.68 0.84 0.42 0.28 0.14

As indicated by the above table the velocities entering into
problems with which the engineer has to deal are ordinarily
greater than the higher critical velocity. If not otherwise stated,
therefore, turbulent flow will be assumed.

The laws governing stream-line motion are radically different
from those governing turbulent motion.

91. Friction and Distribution of Velocities.—There is always
friction between moving water and the surface of the conduit
with which the water comes in contact. If this were not so the
water in every part of the cross-section would flow with the same
velocity. Fig. 92 shows the normal condition of flow in a straight
pipe where there are no disturbing influences. Water particles
adjacent to the surface are retarded by friction and viscosity
(Art. 6) causes a retardation of the particles removed from the
pipe surface. The maximum velocity is at the center, and
lines of equal velocity are concentric rings as shown in cross-
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section. The velocities in any longitudinal section when plotted
as absicssas with the distance from one edge of the pipe as ordi-
nates approximately define an ellipse. Experiments indicate that
the mean velocity is about 0.85 of the maximum velocity. If d
represents the diameter, the circle of mean velocity is approxi-
mately 0.13d from the surface of the pipe.

R 2T R SR

Fig. 92.—Distribution of velocities in straight pipe.

Any irregularity or obstruction in a pipe or any condition
which causes the water to change its direction of flow will change
the regular distribution of velocities. /A bend in a pipe, for
example, causes the line of maximum velocity to move from
the axis of the pipe towards its concave side. Fig. 93 shows the

Fig. 93.—Distribution of velocities in curved pipe.

actual distribution of velocities in a curved pipe from measure-
ments by Saph and Schoder.

92. Energy of Water in a Pipe.—The energy contained in a
stream of water assumed to be moving with a uniform velocity,
that is, with the same velocity in every part of its cross-section,
is given by the formula,

KE=W”2

2—97 . (4)
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W being the weight of water which moves past a cross-section in
one second with a uniform velocity »v. In the previous chapter,
Art. 72, it has been shown that for the same average velocity,
the energy of moving water in an open channel is greater
for non-uniform velocity in a cross-section than for uniform
velocity. The same is manifestly true for pipes, and since, as
explained in the preceding article the velocity in pipes is never
uniform, the kinetic energy of water in a pipe is given by the
formula,

KE=dW2—v;, B )]
in which a, a coefficient depending for its value upon the distri-
bution of velocities in the pipe, is always greater than unity.
Experiments by Bazin and others indicate that for a straight
pipe, a has a mean value of about 1.06. '

In problems involving the flow of water in pipes it is common
to assume that the velocities at all points of a cross-section are
equal, or that a equals unity and therefore, the kinetic enpergy

contained in 1 lb. of water (or the velocity head) is equal to 2—”;

Bernoulli’s equation, when written between two points in a fila-
ment, then applies to the entire cross-section in which the points
lie. The error introduced by assuming « equal to unity is not
usually of serious consequence.

93. Continuity of Flow in Pipes.—In any pipe flowing full,
within the limits of error resulting from the assumptions that
water is incompressible and the pipe inelastic, at any given
instant the same quantity of water is passing every cross-section
of the pipe. This statement implies continuity of flow (see
Art. 41) and holds true even when the flow is unsteady, a
condition which exists when the head producing discharge is
variable.

94. Loss of Head.—If there were no friction losses, the
velocity at which water would discharge from a pipe, Figs. 94
and 95, would be »,=+V2¢H, the same as for an orifice. For
a horizontal pipe of uniform diameter, Fig. 94, there would be no
pressure other than that resulting from the weight of water
within the pipe and water would not rise in the piezometer tubes
at m and n. In any long pipe or system of pipes, however, by
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far the greater portion of the total head, H, is used in overcoming
friction.

If there is no change in the diameter of a pipe, the difference
in height of water columns in piezometer tubes at any two
sections measures the loss of head due to friction between those
sections. In Fig. 94 the loss of head between sections at m and
n is hm—hs. In Fig. 95, which represents a system of pipes of
different diameters, hi—hm is the loss of head between sections .
at ! and m plus the increase in velocity head at m over that at .

- ———— - ——_—————-qr—-

Fig. 94.—Pipe discharging from reservoir.

Similarly, hm—ha (Fig. 95) is the loss of head between sections at
m and n minus the decrease in velocity head.

Considering the system of pipes illustrated in Fig. 95, Ber-
noulli’s equation may be written between a point S in the water
surface and another point E at the outlet as follows:

E2+pE+ZE+H1, N ()

+ P54 25=
H; being the total loss of head from all causes and the remainder
of the nomenclature being as indicated in the figure. Since vs
may be considered as equal to zero and ps=pz=atmospheric
pressure, equation (6) reduces to

ZS—ZE_”Ez

+Hy,. . . . . . .0
or since Zs—Zg=H, the total head

2
=%%+H1........(8)
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This means, that for a pipe discharging into the air, the
total head is equal to the velocity head at the end of the pipe
plus the sum of all friction losses. Since the velocity head at
exit must be provided out of the total head, H, it is usually con-
sidered in the same manner as lost head. It should be remem-
bered, however, that as the water leaves the pipe it still retains
the energy represented by its velocity head.

In the case of a pipe connecting two reservoirs, Fig. 97, the
water in the upper reservoir has a velocity of zero and it finally
comes to rest in the lower reservoir. The reservoirs may be
considered as parts of the pipe system in which the velocities

.

Fig. 95.—Pipe of more than one diameter.

are zero, the entire head, H, being utilized in overcoming friction;

whence
H=H,.

Frictional losses result from various causes. In any pipe in
which the diameter remains unchanged and there are no con-
ditions tending to disturb a regular distribution of velocities, the
only loss of head is that due to the combined effects of viscosity
and friction between the moving water and the surface of the
pipe. This loss of head is commonly referred to as loss of head due
to friction. Other losses of head are those which result from
changing the velocity or direction of flow.

In ordinary pipe lines the loss of head due to friction is the
greater portion of the total head. Frequently all other losses
are so small in comparison as to be negligible. Cases arise,
however, which require careful consideration of these losses and
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serious errors may result from neglecting them. Losses of head
other than the loss of head due to friction are commonly known
as minor losses.

The following are the principal causes of loss of head in
pipes, together with the symbols which will be used to designate
these losses. (All losses except (a) are minor losses.)

- (a) A continuous loss of head due to friction between the
moving water and the inner surface of the pipe, and to viscosity.
This loss is commonly referred to as the loss of head due to friction,
and is designated by the symbol 4.

(b) Aloss of head at the entrance to a pipe, ho, the loss occurring
where the very low velocity in the reservoir (usually considered
zero velocity) changes to the velocity in the pipe. This is called
the loss of head at entrance.

(c) A loss of head, hs, which occurs where a pipe discharges
into a reservoir or other body of comparatively still water. This
will be called the loss of* head at discharge.

(d) A loss of head, he, at the place where a pipe changes to a
smaller diameter thus causingan increase invelocity. This is called
loss of head due to sudden or gradual contraction, depending upon
whether the contraction takes place abruptly or by means of a
tapered connection between the two pipes allowing the change
in velocities to be made gradually. The loss of head at entrance
(referred to under (b) above) is evidently a special case of loss
due to contraction.

(e) A loss of head, k., at the place where a pipe changes to a
larger diameter thus causing a decrease in velocity. This is
called loss of head due to sudden or gradual enlargement, depend-
ing upon whether the enlargement takes place abruptly or by
means of a tapered connection between the two pipes allowing
the change in velocities to be made gradually. The loss of
head at discharge (referred to under (c) above) is evidently a
special case of loss of head due to enlargement.

(f) A loss of head, h,, caused by obstructions in a pipe line,
such as gates or valves. Obstructions cause the water to pass
through a restricted area for a short distance, thus causing first
a sudden increase in velocity and then a sudden return to the
original velocity. This will be called the loss of head due to
obstructions.

(g) A loss of head, ks, at bends or curves in pipes, in addition
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to the loss which occurs in an equal length of straight pipe.
This is designated the loss of head due to bends.

If the symbol H, is used to designate all losses of head in a
pipe line, the loss of head due to friction being represented by
hy and all minor losses by Ha,

Hi=h+Hs, . . v v v o o o (9
Ho=hothathethethy+hs. . . . . (10)

95. Hydraulic Gradient.—The locus of the elevations to which
water will rise in a series of piezometer tubes inserted in a pipe
line is called the hydraulic gradient or hydraulic grade line.
The hydraulic gradient of a straight pipe of uniform diameter
having the same degree of roughness of interior surface through-
out is a straight line. In Fig. 94 the line ac is the hydraulic
gradient for the pipe. Where a pipe changes in diameter or
where for any reason there is a change in velocity or direction
of flow, there is a break in the hydraulic gradient, the change
in elevation being the combined effects of the change in velocity
head, where velocity changes occur, and the loss of head due
to friction or turbulence. The broken line ajazbibacicedidze,
Fig. 95, represents the hydraulic gradient for the system of pipes
shown. The hydraulic grade line thus indicates all losses of head
and changes in velocity head.

in which

Fia. 96.

96. Loss of Head Due to Friction in Pipes.—Fig. 96 represents
a straight pipe without obstructions or changes in diameter.
The loss of head, k,, in the length [ is a measure of the resistance
to flow. The laws governing this loss are intricate and are not
subject to exact analysis. There are, however, certain general laws
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which are in the nature of conclusions resulting from observation
and experiment, which appear to govern fluid friction in pipes
and which are expressed in the most generally accepted pipe
formulas now in use. These laws may be briefly stated as
follows:

(a) Frictional resistance is independent of the pressure within
the pipe, and other things being equal:

(b) Friction between moving water and the inner surface of
the pipe increases with the roughness of the surface. This may
be expressed as a coefficient K whose value increases with the
degree of roughness of the pipe.

(¢) Friction between moving water and the inner surface of a
pipe is directly proportional to the area of the wetted surface;
that is, it is proportional to the product of the wetted perimeter
and the length or #dl, d being the diameter and ! the length of
the pipe.

(d) As the cross-sectional area of the pipe increases, the
retarding influence of viscosity becomes less, and it usually is con-
sidered to vary inversely as some power of the area, and there-
fore of the diameter or as 1/d".

(e) Frictional resistance varies directly as some power of the
velocity, or as v".

(f) Frictional resistance increases with the viscosity and
therefore inversely with the temperature. This factor is usually
omitted from pipe formulas, coefficients being selected which apply
to average air temperatures.

Combining the factors expressed in (b), (c), (d) and (e) above,
the total head lost is represented by the equation,

h,=K><1rdl><§;><v", R ¢ )

or substituting K’ and m for K X7 and z—1 respectively, the
general expression for loss of head due to friction in pipes may
be written,

h=KLm . . N ¢ )

since l;—’= s, formula (12) may be transposed to the form
1

nml
v= (kl—,) drsm,



146 - FLOW OF WATER THROUGH PIPES

S|

or substituting K’ for (Rl—,> , yfor ;—'3, and z for 1%,

v=K"ds, . . . . . . . . . (13)

or since the hydraulic radius r, for a circular pipe flowing full,
equals d/4, or d=4r, formula (13) may be written,

v=K" X4 XY X¢,
or substituting K’ for 4/K"’,
v=K"m%*. . . . . . . .. . (19

Each of the above formulas, though expressed differently, con-
tains all of the factors, excepting temperature, which are believed
to affect fluid friction. The base formulas for friction losses in
pipes are commonly written in any of the three forms expressed
by equations (12), (13), and (14).

The further consideration of loss of head due to friction in
pipes must be purely empirical. The values of coefficients and
exponents to be applied to the base formulas are determined
from the available experimental data. Of the large number of
published formulas for determining the loss of head due to friction
in pipes, only a few are given.

It should be kept in mind that in all of the following formulas,
ks, I, d and other linear quantities must'be expressed in feet
and v must be expressed in feet per second.

97. The Chezy Formula.—This formula deserves a place of
prominence among pipe formulas not only because it represents
the first successful attempt to express friction losses in algebraic
terms, but also because it embodies all of the laws of fluid friction
as they are understood and applied at the present time, and with
certain modifying factors that have been found necessary, its
use is now more general than that of any other formula either
for pipes or open channels.

As written by Chezy in 1775 this formula is

v=CVrs, . . . . . . . (15)

h
in which v is the mean velocity, r is the hydraulic radius and s=7!

is the rate of slope of the hydraulic gradient. It will be observed
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that formula (15) is of the same form as (14), y and 2 being each
1 and C being substituted for K’’.

The coefficient C was supposed by Chezy to be constant,
but it is now known to vary with the degree of roughness of
the surface with which the water comes in contact as well as
with the velocity' and hydraulic radius (or diameter). Since C
appears to be a function of » and r the Chezy formula evidently
does not accurately express the law of fluid friction. In the ideal
formula, the coefficient would vary only with the roughness of
the channel, and many attempts have been made to obtain a
formula with such a coefficient expressing v as a function of r
and s. These attempts have met with rather indifferent success.

Formula (15) is used with an accompanying table giving
values of C for different velocities, diameters and kinds of pipe.
The table on page 148 gives approximate average values of C for
four different kinds of pipe, as obtained from the available experi-
mental data.

In an account of experiments on the flow of water in pipes,
published by Darcy ! in 1857, he expressed the Chezy formula

in the form,

l
h!=fa‘ '2—5, D Y (16)

the relations between C and f in formulas (15) and (16) being

f=3% and _C=2\/§9.

It will be observed that formula (16) may be obtained from
formula (12) by writing n=2 and m=1, the two formulas being
of the same general form.

From his experiments Darcy deduced the following values of
f, as representing the mean of his observations.

For new, clean cast-iron pipes, d being the diameter of the
pipe in feet,

0.02

f=0.024357.

For old cast-iron pipes,
0.04
f— 0.04+W.

1M. H. Darcy: Recherches Expérimentales Relatives au Mouvement
de l'eau dans les Tuyaux. Paris, 1857.
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Later experiments have indicated that f (similar to C in
formula (15) ) varies with v as well as with d. Formula (16),
the same as formula (15), is used more satisfactorily with an
accompanying table of coefficients. The table on page 149 gives
average values of f for different kinds of pipe. The two formulas,
(15) and (16), used in connection with the coefficients tabulated
on pages 148 and 149, respectively, will give the same results.
The formula is written in the two forms merely as a convenience
in solving different types of problems.

The values of C and f given in the tables on pages 148 and 149
refer not only to pipes of the particular materials listed but to
any pipes of similar degrees of roughness. The problem “of
selecting the proper coefficient for a given condition is one with
which the engineer is continually confronted, and in making such a
selection experience is the best teacher. It is important to know
the most probable value of a coefficient and the maximum per
cent of error likely to result from its use. The average values of
C and f listed in the tables may give results in error as much as
20 per cent plus or minus.

The following values of f for 23-in. fire hose are given by
Freeman:

VaLues oF f IN CuEzy FormuLA FOR 23-IN. FIRE HosE

VEevLociTy IN FEET PER SECOND.
Description.
4 ‘ 6 10 15 20
Unlined canvas. . ................... .038 | .038 | .037 | .035 | .034
Rough rubber-lined cotton............ .032 | .031| .031 | .030 | .029
Smooth rubber-lined cotton........... .024 | .023 | 022 | .019 | .018

98. Hazen-Williams Formula.—This formula which is of the
form of (14) is
v=Cyr"8s0540.001-%%, . . . . . 17

It is designed for both pipes and open channels, but is used more
commonly in connection with pipes. The selection of exponents
was made with a view to obtaining a minimum variation in C;
for all conduits of the same degree of roughness. In other
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words the aim was to select values for exponents such that C;
would be, as nearly as practicable, a function only of the degree
of roughness of the channel and not of » and s. The following is
written by the authors! of the formula.

“If exponents could be selected agreeing perfectly with the
facts, the value of C; would depend upon the roughness only,
and for any given degree of roughness C; would then be a constant.
It is not possible to reach this actually, because the values of the
exponents vary with different surfaces, and also their values may
not be exactly the same for large diameters and for small ones,
nor for steep slopes and for flat ones. Exponents can be selected,
however, representing approximately average conditions, so that
the value of C; for a given condition of surface will vary so little
as to be practically constant. Several such ‘exponential’
formulas have been suggested. These formulas are among the
most satisfactory yet devised, but their use has been limited by
the difficulty in making computations by them. This difficulty
was eliminated by the use of a slide-rule constructed for that
purpose.

““ The exponents in the formula used were selected as repre-
senting as nearly as possible average conditions, as deduced from
the best available records of experiments upon the flow of water
in such pipes and channels as most frequently occur in water-
works practice. The last term, 0.001”°* is a constant, and
is introduced simply to equalize the value of C; with the value
in the Chezy formula, and other exponential formulas which may
be used, at a slope of 0.001 instead of at a slope of 1.”

Since 0.001 ~**=1.318, the formula may be written,

v=1.318Cr%%3s%%4, . . . . . . (18
The authors of the formula give the following values of C; for
pipes:
For extremely smooth and straight pipes....C1=140

For very smooth pipes.................... C1=130
For new riveted steel pipes. ............... C1=110

For estimating discharges of pipe lines where the carrying

capacity after a series of years is the controlling factor, values of

1 WiLriaMs AND Hazen: Hydraulic Tables. Third Edition, 1920.
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C1=100 for cast-iron pipe and C;=95 for riveted steel are
recommended. For the smaller sizes of pipes a somewhat lower
value of C; should be used.

For smooth wooden pipes or wooden-stave pipes, C; =120.

For vitrified pipes, C;=110.

For old iron pipes in bad condition, C;=80 to 60, and for
small pipes badly tuberculated, C; may be as low as 40.

99. King Formula.—Consider the base formula (12), which
for convenience of reference is here repeated,

l

h=K'go™ . . . . . .. (12

It has been found from experiments on a great many kinds and
sizes of pipes that no value of n can be found which does not
vary under different conditions of flow. The extreme range of
variation, from investigations by Lea ! and others, is from about
1.75 to 2.08. On the other hand, it appears that a mean value
of m of 1.25 may be assumed without introducing any serious
inconsistencies. Formula (12) has therefore been modified by
Lea to the form,

l
h,=K1dT_ﬂv", . . . . . . . (19)
K, and n each being given variable values depending upon the

degree of roughness of the pipe.
The formula also may be written,

b2
dl.?& 29’ .

k=25
4

k=K (20)

in which

Formula (20) expresses the loss of head due to friction as a
function of the velocity head. This is sometimes convenient
since miner losses are usually thus expressed (Art. 102). The
formula is somewhat simpler to use than a formula in which »
has a fractional exponent. On the other hand, since K varies

1F. C. LEa: Hydraulics, p. 139. H. W. Kina: Handbook of Hydraulics,
p. 159.
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only with v and not with d, a much simpler table of coefficients
is required for formula (20) than is required for the Chezy formula.

Average values of K to be used with formula (20) are given in
the table below. These values are the same as the values of f
on page 149 for d =12 inches.

l 2
VaLues oF K IN THE ForMuLA Ay=K ﬁ%
Velocity, Clean Old Clean Clean
in cast~iron cast-iron wooden concrete
feet per second pipe pipe pipe pipe
2 .021 .038 .025 .029
5 .019 .038 .020 .025
10 .018 .038 .017 .023
20 .016 .038 .015 .021

Formula (20) may also be transposed and written,
v=q% 7 0628,

in which h,/l=s is the slope of the hydraulic gradient. Sub-

stituting this value and writing C’ for 2—;,

O L 1))

In this form the formula is more convenient for certain types

of problems. Average values of C’ are given in the following
table:

VaLUES oF C’ IN THE ForMuLA v =C's¥d%6%6

Velocity, Clean ol Clean Clean
in cast-iron cast-iron wooden concrete
feet per second pipe pipe pipe pipe
2 55 42 51 47
5 58 42 57 51
10 61 42 62 53
20 63 42 66 56;
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Formulas (15), (16), (20) and (21), when used with their
accompanying tables of coefficients, all give the same results.

100. General Discussion of Pipe Formulas.—The foregoing
formulas represent the more common types of formulas for deter-
mining the loss of head due to friction in pipes. There are an
indefinite number of formulas, many of which possess merit.
The choice of one formula over another is not of so great impor-
tance as the careful and intelligent use of the formula after it is
selected. The engineer should select the formula for general
use which he believes to be in the most convenient form, and
after adopting it he should endeavor to become familiar with its
coefficients. The tables contained in this volume are sufficient
for class room exercises, but the practicing engineer should
extend his knowledge of coefficients by study and observation,
and obtain values from actual measurements whenever the -
opportunity offers.

101. Friction Formula for Non-turbulent Flow.—If ¢’ is
the velocity in feet per second, ds the diameter of the pipe in
inches, h, the friction loss in a length I, and P the viscosity
coefficient (formula (3), Art. 90), the velocity in a pipe where
stream-line flow exists according to Reynolds is

. 361dch,
V' =—p—"

If a case be assumed where ds=1 in., h,=1 ft. and {=100 ft.,
v’ for a temperature of zero degrees Centigrade is 3.61 ft. per
second, and for higher temperatures the velocity would be greater.
The table on page 138 shows this velocity to be above the higher
critical velocity and the flow must be turbulent. Formula (22)
therefore does not apply and one of the formulas for turbulent
flow should be used. '

102. Detailed Study of Hydraulic Gradient and Minor Losses.
—In the discussion of loss of head due to friction (Art. 96), it
has been shown that, other things being equal, the loss of head
varies as v" and that usually n is less than 2 but does not vary
greatly from this value. In some formulas, therefore, this loss
of head is expressed as a function of the velocity head and coeffi-
cients varying in value with v are applied to the formulas to make
them represent average friction losses as given by experiments.

In a similar manner it has been found that minor losses (Art.

(22)
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94) vary roughly with the square of the velocity and they are
commonly expressed in formulas as functions of the velocity
head. Variable coefficients are then applied to these formulas
80 as to make them give losses in accordance with the available
experimental data. These losses (see Art. 94) expressed alge-
braically are

hom Ko 2 2

'é—g) "‘=K42_g; he=K, 2_0) ete.,
and formula (10), page 144, may be written,
2 v? 2 v? 2 2
H2 —KO 2g+Kd 2g+Kc 2g+Ke 2g+Ko 2g+Kb 29. .

In the above equation, v is a general expression foer velocity.
It is the velocity in the pipe where the loss of head occurs and
- in case of enlargement or eontraction it is the velocity in the
smaller pipe. Ko, K4, K, etc., are variable coefficients whose
values must be determined from experiments.

Fig. 97 illustrates enirance and discharge conditions for a
pipe leading from one reservoir into another reservoir at a lower
elevation. The water starts with zero velocity in the upper
reservoir, finally coming to rest in the lower reservoir, and all
of the energy represented by the difference in elevation of water
surfaces is utilized in overcoming resistance.

In Fig. 97, aiaz represents the hydraulic grade line which
results from changing the velocity of the water from zero to the
velocity which it attains in the pipe. The vertical distance
between a@; and ag, that is, the distance which as is below the
surface of the water, is the velocity head or v2/2g, where v is the
mean velocity in the pipe. The line aja2 must be considered as
the hydraulic gradient of some particular filament of water, such as
zy, since points in other filaments which are the same horizontal
distance from the entrance to the pipe may have different veloci-
ties and therefore different hydraulic gradients. It may appear
that the pressure at any point in the filament should be that due
to the weight of the water column above it. This would be true
if the laws of hydrostatics might be applied. The laws of hydro-
statics do not, however, apply to water in motion, the pressure
being less than it would be at the same depth for water at rest.
That this is true has been proved experimentally. It also follows
from writing Bernoulli’s equation between a point z where the

(23)
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velocity is practically zero and a point y at the entrance to the
pipe where the velocity equals v, the velocity in the pipe. Assum-
ing the points to be of the same elevation the equation becomes

w2 P
or since v, is practically zero,
2
hy=hs %

The head lost at entrance to a pipe takes place within a distance
of about two or three diameters from the entrance and is similar
to the loss of head in a short tube. The line azas, Fig. 97, is
the portion of the hydraulic gradient which shows this loss of

29

Fig. 97.—Pipe connecting two reservoirs.

head. There is a depression in the hydraulic gradient at a’
because of the contraction of the jet. Vertically below a3, the
jet has expanded and fills the tube. The head lost at entrance is
the vertical distance between a2 and as, or ho.

Since the first two or three diameters of a pipe are similar to
a short tube, entrance losses for pipes may be considered to be
the same as for short tubes. The general formula for loss of
head at entrance to a pipe is then (formula (22), page 81),

1 \#_
ho_ <'C—'2— 1)2—g—K02_g, . . . . - (25)

in which the coefficient of discharge, C, depends for its value upon

. 1 .
the conditions at entrance, and Ko=-+—1. For convenience of

2
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reference, values of C and Ky given in Chapter VII, are repeated
in the following table:

CoEFFICIENTS FOR DETERMINING Loss oF HEAD AT ENTRANCE TO PIirEs

Entrance to pipe Reference (4 K,
Inward projecting.............. Art. 63 0.75 0.78
Sharp cornered................. Art. 58 0.82 0.50
Slightly rounded............... Art. 57 0.90 0.23
Bellmouth.................... Art. 57 0.98 0.04

Since the effect of entrance conditions can not be determined
accurately the selection of a proper value of Kp is to some extent
a matter of judgment. Unless the entrance is known to be other
than sharp cornered, a value of 0.5 is commonly used.

Conditions at the outlet of a pipe may be illustrated in a similar
manner. If there were no loss of head where water enters the
lower reservoir the hydraulic grade line would connect a3 and e;
(Fig. 97), the latter point being v2/2g below the surface of the
water. The distance eje; represents the portion of the velocity
head lost through shock and turbulence. This may be illustrated
by writing Bernoulli’s equation between a point s at the outlet
of the pipe where the velocity equals », the velocity in the pipe,
and a point u where the velocity vy is practically zero. ha equals
the loss of head due to turbulence. If the two points are at the
same elevation,

htge =it iethe . (20)

or since v, =0, 2
=hy— e e e e e .. (27
by 2g+h.: 27

hu—hs represents the portion of the velocity head which is not
lost but which is reconverted into pressure head. The rate at
which this reconversion takes place is represented in the figure
by the line eges, the end of the hydraulic gradient.

Expressing the head lost at discharge, hq, as a function of the
velocity head, 2

hd=K¢2—g........

(28)
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- The loss at discharge is the special case of loss of head due to
sudden enlargement in which the ratio of smaller to larger dia-
meter is practically zero. Values of K; may therefore be taken
from column 2 of the table on page 161. Since these values are
nearly unity for the ordinary velocities encountered in pipes it is
commonly considered that the entire velocity head is lost.

Change in gradient resulting from sudden coniraction in pipes
is illustrated in Fig. 98. If there were no loss of head between
any two points, on opposite sides of the contracted section, the
difference in heights of water columns in two piezometer tubes as
b and e, above these points would measure the gain in velocity
head. If the two points are considered so close together that
pipe friction may be neglected, the difference in height of water

Fig. 98.—Sudden contraction in pipe.

columns b and e measures the gain in velocity head plus the loss
of head due to sudden contraction.

The hydraulic gradient as determined experimentally is
illustrated by the line abcdef. There is a depression at d, due
to contraction of the jet, similar to the depression at a’ in the
hydraulic grade line of Fig. 97. The piezometer tube ¢ measures
the pressure in the corner where there is little or no velocity.
If piezometer tubes, ¢ and d, were arranged to measure pressures
near the axis of the pipe where the velocities are higher, the
hydraulic gradient would be below bede and wovld resemble
bc'd’e.

It is important to note that the ordinary piezometer tube,
which is set flush with the inner surface of the pipe, measures
the pressure at the surface of the pipe but does not necessarily
measure the pressure at points in the same cross-section at some



DETAILED STUDY OF HYDRAULIC GRADIENT 159

distance from the surface. In smooth straight pipes the differ-
ence between pressures at the surface and interior points is prob-
ably not great but the difference may be quite large near sections
where changes in diameter occur.

The loss of head due to sudden contraction expressed as a
function of the velocity head is

)
hc = Kc "2‘—g, . . . . . . . (29)

in which K. is an empirical coefficient, and v is the velocity in
the smaller pipe. The following table gives experimental values
of K.

VALUEs oF THE CoOEFFICENT K., FOR SUDDEN CONTRACTION

I RaTI0 OF SQALLER TO LARGER DIAMETER
Velocity in

smaller pipe,

00(0.1({0.2/03|04{0506|07]|0.8]0.9

2 0.49 [0.49 |0.48 |0.45 |0.42 [0.38 |0.28 |0.18 |0.07 |0.03
5 | .48 | .48 | .47 | 44| 41| .37 | .28 | .18 | .09 | .04
10 47| 46| 45| 43| 40| .36 | .28 [ .18 | .10 | .04
20 44 | 43| 42| 40| .37| .33 | .27 .19 | .11 | .05
40 - .38 .36 | .35 .33 | .31 | .29 | .25 | .20 | .13 | .06

The loss of head at entrance to pipes is a special case of loss
of head due to contraction. If the body of water is large the
conditions conform approximately to a ratio of diameters of
zero, and for a square-cornered entrance, where the end of the
pipe is flush with a wall having a plane surface, the values of Ko
are comparable with the values of K. in the second column of the
above table.

If the change to a smaller diameter takes place gradually, as
is the case with a gradually tapering section connecting the two
pipes, or if the corners of the smaller pipe are rounded so as to
reduce contractions, values of K. will be much smaller than those
given for a sudden reduction of diameter. If the change is made
as gradually as in a Venturi meter or if a bell-mouth connection
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(page 85) between the two pipes is used, K, may become prac-
tically negligible.

Change in gradient resulting from sudden enlargement is shown
in Fig. 99. In this case the change in height of water columns
in piezometer tubes b and e, before and after enlargement,
measures the gain in pressure head and this gain is equal to the
loss in velocity head minus the loss of head due to sudden
enlargement, the loss of head due to pipe friction being assumed
so small as to be negligible. This may be verified by writing
Bernoulli’s equation between points on either side of the enlarge-
ment.

The hydraulic gradient as plotted from experiments by
Gibson is abcde. The pressures shown by tubes ¢ and d being

Fig. 99.—Sudden enlargement in pipe.

measured at the surface of the pipe are undoubtedly less than if
they were measured near the center of the pipe. In this case
the piezometer tube ¢ would read practically the same as the
tube b and the pressure would be greater than that indicated.
The portion of the hydraulic gradient bede would then be similar
to bc'd'e.

The loss of head due to sudden enlargement expressed as a
function of the velocity head is

-k
h=Kego - o oo (0)

Archer! has shown from an investigation of his own experi-

1W. H. ArceER: Loss of Head Due to Enlargements in Pipes. Trans.
Amer. Soc. Ciy. Eng., vol. 76, pp. 999-1026 (1913).
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ments and the experiments of others that A is quite accurately
represented by the formula,
(v_vl)l.919

he=1008"—1— . . . .. @3l
2% (31)

in which v is the velocity in the smaller pipe and v; is the velocity
in the larger pipe. Experiments at the University of Michigan
indicate that Archer’s formula holds quite accurately in the
limit where v, is zero. In this case the conditions become those
of loss of head at discharge, discussed on page 157.

By equating the values of k. given by equations (30) and (31)
and transposing, the following value of K. is obtained:

1.098 d2 1.919 .
K.=W(l—d—12> .. (32

d/d; being the ratio of the smaller to the larger diameter. The
following table of values of K. are computed from formula (32):

VaLuEs oF THE CoEerrcIENT K., for SUDDEN ENLARGEMENT

o . RATIO OF SMALLER TO LARGER DIAMETER
Velocity in

smaller pipe,

v

00({0.1/02/03|04(05[06]07]|08|0.9

2 1.00 |1.00 |0.96 |0.86 |0.74 |0.60 (0.44 (0.29 |0.15 |0.04
5 96| 95| .89 | .80 .69 | .56 | .41 | .27 | .14 | .04
10 93| .91 | .8 ( .77 | .67 | .54 | .40 | .26 | .13 | .04
20 .86 | .84 | .80 | .72 | .62 | .50 | .37 | .24 | .12 | .04
40 .81 | .80 | .75 | .68 | .58 | .47 | .35 | .22 | .11 | .03

The loss of head due to enlargement in pipes may be reduced
by changing the diameters gradually. If the diameter increases
at a uniform rate, the amount of loss increases as the angle
between the axis and surface of the pipe increases and is practi-
cally negligibie for very small angles. Experimental values of K,
have not been well determined for gradual enlargements, but
those given in the following table are the approximate mean of
such data as are available. There are not sufficient experimental
data to determine the extent to which K, varies with the velocity.
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VaLuEs oF THE COEFFCIENT K,, FOR GRADUAL ENLARGEMENT

. RATIO OF SMALLER TO LARGER DIAMETER

Angle between axis
and surface of pipe

0.1({02/03(0.4/05|06(0.7]|0.8]| 0.9

5° 0.04 (0.04 |0.04 [0.04 (0.04 [0.04 [0.03 |0.02 | 0.01

15° .16 | .16 | .16 | .16 | .16 | .15 | .13 | .10 .06

30° 49 | .49 | .48 | .48 | .46 | .43 | .37 | .27 .16

45° .64 | .63 | .63 | .62 | .60 | .55 | .49 | .38 .20

60° 72 (.72 71| .70 | .67 | .62 | .54 | .43 .24

Gates or Valves when partially closed obstruct the flow and
cause a loss of head and consequent drop in the hydraulic gradient.
The difference in elevation of the hydraulic gradient on opposite
sides of the obstruction measures the loss of head due to the
obstruction. Following the form used for other losses, the loss
of head in pipes due to gates, valves, or other obstructions may

be written,

h,=K,,-2v§, Y

v being the mean velocity in the pipe. Experiments indicate
that K, does not vary appreciably with the velocity but increases
with the amount of restriction. The following values of K, are
the average values obtained from the best experimental data
available.

VaLuEs oF THE CoEFFICIENT K, FOR OBSTRUCTIONS IN PIPES

Ratio of area of opening Ratio of area of opening
to cross-sectional area K, to cross-sectional area K,
of pipe of pipe

—

coooo
0 DD e
oo
oNoow!m
eocoeoe
© 0~
eorrw
NS00~

Bends or curves in pipes cause a gradual drop in the hydraulic
gradient which is in excess of the drop that would occur in an
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equal length of the same kind of straight pipe. From a careful
investigation of the available experimental data Fuller ! deduced
the following empirical formula, .

ho=c®®, . . . . . . . (34

hs» being the loss of head due to bends in excess of the loss which
would occur in an equal length of straight pipe, » being the
mean velocity in the pipe and ¢ being a coefficient whose value
varies with the radius, R, of the axis of the pipe expressed in
feet. Fuller gives the following values of ¢ for bends of 90°:
For R=0, ¢=0.0135; for R=0.5, c=0.0040; for R=1, ¢=0.00275;
for R=3, ¢c=0.0024; for R=6, ¢c=0.0023; for R=10, ¢=0.00335;
for R=20, c=0.0060; for R=30, c=0.0070; for R=40, c=0.0075;
for R =60, c=0.0086.
Following the form used for other losses,
hn=Kb2£;, e o e e e e e (35)

" and equating the right-hand members of equations (34) and (35)
and reducing,
Ky,=2gc*%. . . . . . . . (36)

From this formula the values of Ks given in the following table
have been computed:

VaLues oF THE CoEFFICIENT, Kp, FOR Loss oF HEap DuE 10 BENDS oF 90°

Mean Rapius oF BEND IN FEET
velocity
_in
pipe,s| 0 [05] 1 | 2 | 6 [ 8 | 10| 20| 30| 40 | 50

2 1.03/0.31 {0.21 |0.19 {0.18 |0.21 |0.26 |0.45 |0.53 |0.57 |0.61
5 1.30] .38 | .26 | .23 | .22 | .26 | .32 | .57 | .67 | .72 | .77
10 1.54( 46| .31 | .28 | .26 | .31 | .38 | .68 | .79 | .86 | .92
20 1.84/ 54| .37 | .33 | .31 | .37 | .46 | .81 | .95 |1.02 |1.08
40 2.18| .65 | .44 | .39 | .37 | .44 | .54 | .97 |1.12 |1.21 |1.30

From the above table it will be seen that the minimum loss
of head from bends occurs when the radius of the axis of the

1W. E. FuLLer: Loss of Head in Bends. Journal of New England Water
Works Association, December, 1913.



164 FLOW OF WATER THROUGH PIPES

pipe is from 2 to 6 ft. For bends of 45° the coefficients will be
about three-fourths and for 223° about one-half of the values
given in the table.

103. Part of Pipe Above Hydraulic Gradient.—Fig. 100 shows
a pipe of uniform diameter leading from a reservoir and discharg-
ing under the head H. The summit, M, is a distance y above the
straight line BeC but at a lower elevation than the water surface
in the reservoir. Two conditions will be considered: first,

Da P Da—

where y<——, and second, where y> ——w—p', ps being atmos-

pheric pressure and p, being the vapor pressure corresponding
to the temperature of the water in the pipe.
Assume the pipe AMSC, Fig. 100, to be empty when water

\
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Fig. 100.—Part of pipe above hydraulic gradient.

is turned into it at A. Water will first rise to the summit M
and begin to flow down the decline toward the depression S,
at which point it will collect and seal the pipe entrapping air
between M and S. Eventually water will discharge from the
outlet C. If the velocity is high enough the air entrapped
between M and S will be removed by the flowing water, other-
wise it will remain there and obstruct the flow. In such cases
the air may be removed by a suction pump at the summit. If
there is no air in the pipe and y<p'an°, assuming the loss
of head to be uniform, the hydraulic gradient will be the straight
line BeC and the flow will be the same as though all of the pipe
were below the hydraulic gradient.

If y>Pa—Pe p, , the flow of water will be restricted, even though
all air is exhausted from the pipe, and the hydraulic gradient
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will no longer be a straight line. This condition is illustrated
in Fig. 100. The hydraulic gradient is a straight line to a point,

D, which is a distance d=”°—;’i' below the summit, M. At M

(assuming no air in_the pipe) the absolute pressure in the p’pe
is the vapor pressure corresponding to the temperature within
the pipe and this pressure continues on down to N, the pipe
flowing partially full between M and N. Throughout all por-
tions of the pipe flowing full the velocity must necessarily be the
same since the discharge is constant and therefore, assuming a
uniform degree of roughness for the pipe, the slope of hydraulic
gradient in such portions must be uniform. In other words,
the slope of EC must be the same as the slope of BD. Through-
out the distance where the pipe is not flowing full, the hydraulic
gradient, represented by the line DE, is the same vertical distance,
d, below the water surface in the pipe. The point E is the
intersection of the line CE, parallel to BD, and the line DE.
The section at N where the pipe begins to flow full is vertically
above E.

The conditions of flow, especially at low velocities, are not
usually as favorable as those described above, because of the
tendency of air to collect at a summit. Water flowing at low
velocities will not remove air and may even liberate it, and
cause air to collect at high places such as M, Fig. 100. The
condition will be worse at summits above the hydraulic gradient
if the pipe leaks, since the movement of air will be inward. In
such cases the occasional operation of an air pump at the summit
will be necessary to remove the air. At a summit below the
hydraulic gradient, where the pressure within the pipe is greater
than atmospheric, the air which collects may be removed through
a valve. :

Air at a summit which is below the elevation of the water
surface will not stop the flow of water entirely but will cause a
portion of the pipe to flow partially full. Summits in pipe lines
are always objectionable, and especially so are summits above the
hydraulic gradient. Where they cannot be avoided special pro-
vision should be made for removing the air which collects.

104. Special Problems.—Pipe lines may be composed of
pipes of several diameters connected in series, or they may branch
in different ways so as to divide the flow, thus presenting a
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variety of problems. Oftentimes such problems may be solved
more readily by trial solutions, though some formulas may be
derived which are of assistance. A few special cases are given
in the following pages. Problems of this type are encountered
frequently in designing mains for city water supplies.

If the pipes are long (1000 diameters or more) the minor
losses will ordinarily be comparatively small and are usually
neglected. If, however, it is desired to include these losses, a
solution should be made first neglecting them and then correcting
the results to include them.

105. Branching Pipe Connecting Reservoirs at Different
Elevations.—A, B and C are three reservoirs connected by
pipes 1, 2 and 3, as shown in Fig. 101. Let I3, di, Q; and v

———-

e — ——

F1a. 101.—Branching pipe connecting three reservoirs.

represent, respectively, the length, diameter, discharge and mean
velocity for pipe 1, and the same symbols with subscripts 2
and 3, the corresponding terms for pipes 2 and 3. If a piezom-
eter is assumed to be at the junction P, the water surface in
the tube will be a certain distance, h;, below the surface in reser-
voir A. The surface of reservoir B is a distance Hp=h;+h2 below
that of reservoir A and the surface of reservoir C is He=h;+hg
below the surface of reservoir A. If hy <Hsp, reservoir A will
supply reservoirs B and C. If h;>Hp, reservoirs A and B will
supply reservoir C. There are many problems suggested by this
figure, in which certain quantities are given with others to be
determined. Methods of solving three of these problems are
given. A

Case 1.—Having given the lengths and diameters of all pipes,
and elevations of the three reservoirs; to determine Q;, @2
and Qs.
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This problem is most conveniently solved by trial. Assume
Q: and solve for A;. Then using Hp minus this computed value
of hy for hs, the loss of head due to friction in pipe 2, solve for
Q2. Similarly, using He minus the computed value of A; for
friction loss, hs, in pipe 3, solve for Q3. Evidently Q;=Q2+Qs,
Q@2 being negative if the direction of flow is from B toward P.
The correct value of Q; will lie between the assumed value and
the computed value of Q2+Q3;. Continue to assume new values
of Qi, between these limits, and repeat computations until
Q1=Q2+Qs.

It may be found helpful in making assumptions to plot com-
puted values of @, Fig. 102,
against the error made in each
assumption, that is, against Q;—
(Q2+Qs3). The resulting differ-
ence may be either plus or minus.
If the assumed values of Q; are
well selected they will define & “wysr654 sznnzsuusom
curve whose intersection with the Q-(Qs +Q,)

Q:-axis will give the discharge as Fia. 102.

accurately as is usually required.

The points should be on both sides of the Q;-axis and preferably
one of the points should be quite close to it. Usually not
more than three trial solutions will be necessary.

This problem may also be solved analytically. Assuming
any formula for pipe friction, as, for example, the Chezy formula,

l1 vl

h=f15 420
also ,
_ b2 v2
hz=f2 &2
and .
.l vs
h3=f3 & 2
From Fig. (101), _
Hg=hy+ho,
and substituting the above values of h; and hg,

LvZ .l v?

_fld2g+fd%’ N G 14
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and in a similar manner,
l l
Ho-hgptha i . . .. . @9
also since Q1 =Q2+Qs
di2v;=do?ve+d32v3. . . . . . . . (39)

By solving equations (37), (38) and (39) simultaneously, v, v2
and v3 may be determined if the other quantities are given.
Since f1, f2 and f3 are dependent upon i, v2 and vs, respectively
for their values, the equations must first be solved with assumed
friction coefficients, to be corrected after the first solution for
velocities has been completed. With these corrected values of
f1, f2 and f3, another solution of the equations for more accurate
values of v;, v2 and v3 may be made.

Case 2.—Having given the lengths and diameters of all pipes,
@1, and the elevations of water surfaces in reservoir A and one
of the other reservoirs as B; to determine the elevation of water
surface in reservoir C.

Using Ql, determine the lost head, hl, in pipe 1. Then
he=Hp—h, is the lost head in pipe 2, using which, Q; may be
computed. @2 will be plus or minus depending upon whether the
direction of flow in pipe 2 is towards B or P. Then Q3 =Q;—Q:.
With Q3 determined, the head lost in pipe 3 may be computed,
and the elevation of water surface in reservoir C obtained.

Case 3—Having given the lengths of all pipes, the elevations
of water surfaces in all reservoirs, @1, and the diameters of two
pipes as d; and dz; to determine ds.

Determine h;, Q2 and Q3 as for Case 2. Then with Qs a.nd
hs=Hc—h; known, compute ds.

108. Compound Pipe Connecting Two Reservoirs.—The reser-
voirs A and B are connected by a system of pipes as shown in
Fig. 103. Pipe 1 leading from reservoir A divides at S into
pipes 2 and 3 which join again at T. Pipe 4 leads from the
junction T to a reservoir B. Let l;, di and v be respectively
the length, diameter and mean velocity for pipe 1, and the same
symbols with subscripts 2, 3 and 4 the corresponding quanitites
for pipes 2, 3 and 4. Q2 and Qs are the respective discharges
for pipes 2 and 3, the sum of which discharges equals Q, the total
discharge through pipes 1 and 4. Assuming piezometer tubes
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al S and T, H is the total head lost in the system of pipes, Ay
is the head lost in pipe 1, ha =hg is the head lost in pipes 2 or 3,
and h4 is the head lost in pipe 4. Before taking up any of the
special problems suggested by this figure a general analysis will
be given.

Any of the formulas for determining loss of head due to
friction may be employed. It will be found advantageous to
use a formula whose coefficient does not vary with the diameter,

F1a. 103.—Compound pipe.

but a fractional exponent for v will be objectionable. Formula
(20) has, therefore, been selected. Since k2 = h3, from formula (20),

Iz v2?

Iz v3?

K2d1252g K3d12529:- (40)
also
—Q_ 40 Qs_ 4Qs
2= az —_‘il'dz2 - a'nd V3= as _‘ird32’
writing these values of v2 and v3 in equation (40),
Iz 16 1 I3 16 1
K2 dz 12 25 1'.2324 2g 3 d3 13 25 1,.2334 29 (41)

Since in formula (20) K varies only with the velocity and not
with the diameter, the error introduced by assuming K:=Kj;
will not be important unless v; and v are widely different. Assum-
ing them equal and canceling,

d525Q2 d525Q3, B €3]]

=i (B @

or
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Placing
Iz (d3
F= \/za(dz) .. @
Q=FQ;, . . . . . . . . (45
and since
Q+Q=Q, . . . . . . . (46
Q+FQ:=Q, . . . . . . (47
and
Qz=ﬁ‘2—p,. (48)

Therefore to determine approximately (within the limits of the
error introduced in assuming K to be a constant) the quantity of
water passing through pipe 2 divide the total discharge by 1+F
and the total discharge minus Q2 gives Q3.

The expression for loss of head may be written,

H=hi+he+hs. . . . . . . . . . . (49

The losses of head in the pipes 1, 2 and 4 may be expressed by
either formula (16) or (20). Using (20), the expression for lost
head becomes

H= Kl lllzs ;; +K2% 29 5, K 4d 11425 0240' . (50)

But Q 40
vl=a—7d12, L (51)
Q2 4Q: 4Q
et s it e v SR )
and 0 49
l)4—a—m...........(53)

Substituting these values of v;, v2 and v4 in equation (50) and
reducing

1 l
H=296322(K1d “5+K‘(1+F'2)d 525+K4d l:u) (54)

If formula (16) in place of (20) had been used in writing equation
(50) the above formula would be
16Q* [ ls
H= 2gn? (fl 5+f2(l_l_—Td5+f4I5). . . . (55)
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In formulas (54) and (55) the coefficients are not constants.
K,, K3, and K4 vary with the velocity and fi, f2, and fi vary
both with the velocity and diameter. Formula (54) will be more
convenient in solving problems where all diameters are not known
since K1, K2, and K4 do not depend upon the diameter for their
value. Three types of problems are explained below.

Case. 1.—Having given the lengths and diameters of all pipes
and the total lost head; to determine Q.

Determine F by formula (44), then determine an approxi-
mate value of Q from formula (54) or (55) estimating the velocities
in pipes 1, 2 and 4 for obtaining trial values of K;, K2 and Kj,
or f1, f2 and f4. If the estimated velocities were not too much in
error this solution may give the value of Q as accurate as is
desired; otherwise with the value of @ obtained by the first
solution determine the velocities and corresponding values of
coefficients in the three pipes and again solve equation (54) or (55)
for Q. The second solution should always give @ within the desired
degree of accuracy. :

To check the result, from the computed value of Q@ determine
h; and h4, then using H— (hy+hs) as the friction loss in pipes 2
and 3 compute Q2 and Q3. The results obtained should show
Q approximately equal to Q2+Qs. If closer agreement between
the computed values of Q and Q:+@; is required than may be
obtained readily by this method the results may be adjusted by
trial solutions. Since there is always uncertainty as to the
proper value of coefficients to use, it is not usually desirable to
work for too close an agreement.

If preferred this problem may be solved entirely by trial
but it will save time in trial solutions to determine first by
formulas (44) and (48) the portion of the total flow that passes
through one of the branching pipes. Then successive values of
Q may be assumed and the lost head in each pipe computed until
the sum of the losses in the three pipes equals the total lost head.
A final check should be made to see that @ equals approximately
Q2+Qs.

Case 2.—Having given the discharge, diameters and len:ths
of all pipes; to determine the total lost head.

The lost head, H, may be determined from equations (44)
and (54).

If preferred Q2 may be first obtained from formulas (44) and
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(48) and Qs from formula (45). Then using these discharges,
compute the head lost in pipes 2 and 3. These should be equal.
If the computations do not show them equal adjust the dis-
charges by trial (reducing the discharge in the pipe showing the
greater loss of head and increasing by the same amount the
discharge in the other pipe), and again compute the head lost in
each pipe. Repeat the assumption and computations until the
losses of head in each of the pipes become the same or until the
agreement is close enough for the purpose. This loss of head
plus the loss of head in pipes 1 and 4, which may be computed
in the usual manner, gives, H, the total lost head.

Case 3.—Having given the discharge, the total lost head, the
lengths of all pipes and the diameters of three pipes; to deter-
mine the other diameter.

Assume that the diameter of pipe 2 is to be determined.
Compute the head lost in pipes 1 and 4 by one of the formulas
for determining loss of head due to friction. Deduct from the
total lost head the sum of these computed losses. With this
difference, which is the head lost in each of pipes 2 and 3, deter-
mine Q3. Then, Q2=Q—@Q3. With Q2 known, and the lost
head determined as described above, compute the diameter of
pipe 2.

If the diameter of one of the single pipes, as for example,
pipe 4, is to be determined, compute the head lost in pipe 1,
as described in the preceding paragraph and also the head lost
in the branching pipes 2 and 3 as described under Case 2. The
difference between the total lost head and the sum of the above
losses is the head lost in pipe 4, from which the diameter of this
pipe may be computed.

107. Pipes of More than One Diameter Connected in Series.
—Fig. 104 represents a pipe of three diameters with lengths I,
l2 and I3; diameters d;, d2 and d3; and velocities v, v2 and vs.
The total loss of head, H, assuming formula (19) for friction
loss is

12 022
2™ 29

ll 1)12

+K» YK B (56)

&31—.25 %)
also

—v3, . . . . . (87)
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substituting the values of vy, v2 and v3 obtained from (57) in equa~
tion (56) and transposing the following formula is obtained:

16 l
H=T2’%2(Kld s W{*‘K:*d 525) . . (58)

From this formula with all quantities but one given, the unknown
quantity may be obtained. If the velocity is not known, values

A I

Tk R

LA

Fi1c. 104.—Pipe of three diameters.

of K;, K2 and K3 must be assumed and corrected from a trial
solution. A second solution of the problem may then be made.

PROBLEMS

1. A new cast-iron pipe 1200 ft. long and 6 in. in diameter carries 1.3 cu. ft.
per second. Determine the frictional loss.

2. Determine the discharge of the pipe described in Problem 1 if it dis-
charges under a head of 80 ft.

8. What diameter of new cast-iron pipe, 1 mile long is required to dis-
charge 4.5 cu. ft. per second under a head of 50 ft.?

4. What diameter of concrete pipe 8000 ft. long is required to discharge
40 cu. ft. per second under a head of 8 ft.?

5. Determine the loss of head due to sudden enlargement if a pipe
carrying 2.0 cu. ft. per second suddenly changes from a diameter of (a) 6 in.
to8in., (b) 6in. to 12in., and (c) 6 in. to 18 in. Also determine the difference
in pressure resulting from these changes.

8. Solve Problem 5 if the direction of flow is reversed in each case.

7. A cast-iron pipe 12 in. in diameter and 100 ft. long having a sharp-
cornered entrance draws water from a reservoir and discharges into the air.
What is the difference in elevation between the water surface in the reservoir
and the discharge end of the pipe if the rate of discharge is 16.0 cu. ft. per
second?

8. If the pipe described in Problem 7 connects two reservoirs, both ends

" being sharp-cornered and submerged, other conditions remaining the same,
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determine the difference in elevation of the water surfaces in the two reser-
voirs.

9. A wood-stave pipe having a diameter of 48 in. is laid on a down-, e
of 6 ft. per mile. Determine the difference in pressure between two points
1 mile apart if the discharge is 45 cu. ft. per second.

10. A wood-stave pipe, 500 ft. long, is to be designed to carry 60 cu. ft.
per.second across a ravine so as to connect the ends of an open flume. If
the difference in elevation between the water surfaces in the two ends of
the flume is to be 5 ft., determine the necessary diameter of pipe, assuming
abrupt changes in section, and neglecting the effect of velocity in the flume.

11. A concrete-pipe culvert 90 ft. long and 3 ft. in diameter is built
through a road embankment. The culvert is laid on a grade of 1 ft. per
100 ft. Water is backed up to a depth of 5 ft. above the top of the pipe
at the entrance and at the outlet the top of the pipe is submerged to a depth
of 2 ft. Assume a sharp-cornered entrance. What is the discharge?

12. In Problem 11 (assuming all other conditions to be the same), what
diameter of pipe will be required to discharge 100 cu. ft. per second?

18. In Problem 11 (assuming all other conditions to be the same) what
will be the depth of water above the top of the pipe at its entrance when
the culvert is discharging 50 cu. ft. per second?

14. A pipe line is to be laid connecting two tangents which intersect at
an angle of 90°. Between two points on these tangents, each distant 100 ft.
from their point of intersection, will the total loss in head be less if a bend
having a radius of 6 ft. or one having a radius of 50 ft. is used?

16. Three new cast-iron pipes are connected in series as shown in Fig. 104.
The first has a diameter of 12 in. and a length of 1200 ft.; the second has a
diameter of 24 in. and a length of 2000 ft.; and the third has a diameter
of 18 in. and a length of 1500 ft. If the discharge is 8 cu. ft. per second,
determine the lost head neglecting the minor losses.

16. If, in Problem 15, the total lost head in the three pipes is 45 ft.,
neglecting the minor losses, determine the discharge.

17. If the three pipes, described in Problem 15, have lengths of 500 ft.
each, the entrance and all changes in section being sharp-cornered, deter-
mine the total lost head when the discharge is 8 cu. ft. per second.

18. Referring to Fig. 101, page 166, if pipes 1, 2 and 3 have diameters of
24 in, 12 in. and 18 in., and lengths of 1200 ft., 500 ft. and 1000 ft., respect~
ively, determine the discharge through pipe 1, if Hp =12 ft. and H¢ =20 ft.
Neglect minor losses. .

19. In Problem 18, determine Hc, if the discharge through pipe 1 is
20 cu. ft. per second, all other conditions remaining the same.

20. In Problem 18, determine the diameter of pipe 3 if the discharge
through pipe 1 is 24 cu. ft. per second, all other conditions remaining constant.

21. Referring to Fig. 103, page 169, if pipes 1, 2, 3 and 4 have diameters
of 36 in., 18 in., 24 in. and 30 in., and lengths of 3000 ft., 2000 ft., 2400 ft.
and 1500 ft., respectively, determine H, if the discharge through the system
is 60 cu. ft. per second. Neglect the minor losses.

22. In Problem 21, determine the discharge if H is 12 ft., other con-
ditions remaining the same.
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28. In Problem 21, determine the necessary diameter of pipe 3 if H is
15 ft., other conditions remaining the same.

24. Three smooth rubber-lined fire hose, each 200 ft. long and 2% in.
in diameter and having 1 in. nozzles, are connected to a 6-in. fire hydrant
If, for the nozzles C,=1 and C,=0.97, determine the necessary pressure in
the hydrant in order to throw streams 100 ft. high, the nozzles being 10 ft.
above the hydrant.

26. Determine the height of streams that can be thrown if the pressure
in the hydrant is 70 lbs. per square inch, all other conditions remaining as
stated in Problem 24.



CHAPTER X
FLOW OF WATER IN OPEN CHANNELS

108. Description and Definition.—An open channel is a con-
duit ‘which conveys water without exerting any pressure, above
atmospheric pressure, other than that due to the actual weight of
water carried. 'Water therefore ordinarily flows in an open channel
with a free water surface, though for an enclosed conduit, like a
sewer flowing full, water may touch the top surface without exert-
ing pressure. In this case it is classed as an open channel. Exam-
ples of open channels are rivers, canals, flumes, and sewers and
aqueducts when carrying water not under pressure.

Open channels have various forms of cross-section. Artificial
channels are commonly of rectangular, trapezoidal, or circular
cross-section, while natural streams have irregular channels.
Though friction losses in open channels follow the same general
laws as in pipes and pipe formulas could be adapted to them,
special friction formulas for open channels are usually employed.

109. Wetted Perimeter and Hydraulic Radius.—The wetted
pertmeter of any conduit is the
line of intersection of its wetted
surface with a cross-sectional plane.
In Fig. 105 the wetted perimeter is
Fic. 105.—Cross-section of trape- the Jength of the broken line abed.

zoidal channel. - - . .

In a circular conduit flowing part
full, as a sewer, the wetted perimeter is the arc of a circular seg-
ment and in a natural stream, Fig. 116, it is the irregular line
abcde.
The hydraulic radius of any section of a channel is its area
divided by the wetted perimeter. All open channel formulas
express the velocity as a function of the hydraulic radius.

110. Friction and Distribution of Velocities.—As described
under pipes (Art. 91) there is friction between the moving water
and the surfaces of any conduit. If there were no other influences

176
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the maximum velocity would ordinarily occur at places most
remote from the surfaces of the conduit which produce friction,
and consequently at the water surface. Owing to surface tension,
however, there is a resistance to flow at the surface of the water,
and the maximum velocity occurs at some distance below the sur-
face. Under ideal conditions, where there are no disturbing influ-
ences of any kind, the distribution of velocities in a regular channel
will be uniform and similar on either side of the center. There
are always, however, some irregularities in every channel sufficient
to prevent a uniform distribution of velocities. The lines of equal
velocity plotted from a large number of velocity measurements for
the Sudbury conduit near Boston, Fig. 106, shows a more regular
distribution of velocities than will be found in most channels.
The distribution of velocities in a river of irregular cross-section, as

F1a. 106.—Distribution of velocities in Sudbury conduit.

determined from velocity measurements with a current meter, is
shown in the upper portion of Fig. 107. The figures show the
velocities obtained at the points, where measurements were made
and the irreguiar lines are interpolated equal velocity lines.

The curves in the lower portion of Fig. 107 show the distribu-
tion of velocities in vertical lines. These curves are called vertical
velocity curves and the velocities from which they are plotted are
called velocities in the vertical. The following properties of ver-
~ tical velocity curves have been determined from the measurement
of velocities of a large number of streams and a study of the curves
plotted from them.

(a) Vertical velocity curves have approximately the form of
parabolas with horizontal axes passing through the thread of
maximum velocity. In general the maximum velocity occurs
somewhere between the water surface and one-third of the depth,

oK
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the distance from the surface to the point of maximum velocity
being at a greater proportional depth for greater depths of water.
For shallow streams the maximum velocity is very near to the
surface while for very deep streams it may lie at about one-third
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F16. 107 —Velocities in natural stream.

of the depth. A strong wind blowing either upstream or down-
stream will affect the distribution of velocities in the vertical.

(b) The mean velocity in the vertical is ordinarily found at
a distance below the surface varying from 0.55 to 0.65 of the depth.
The velocity at 0.6 depth is usually within 5 per cent of the mean '
velocity.
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(c) The mean of the velocities at 0.2 and 0.8 depth usually
gives the mean velocity in the vertical within 2 per cent.

(d) The mean velocity in the vertical is ordinarily from 0.80
to 0.95 of the surface velocity. The smaller percentage applies
to the shallower streams.

The above properties of vertical velocity curves are made
use of in measuring the discharges of streams. Mean velocities
in successive verticals are first obtained by measuring the velocity
at 0.6 of the depth in each vertical or, where greater accuracy is
required, by taking the mean of the velocities at 0.2 and 0.8 of
the depth. The mean of the velocities in any two adjacent ver-
ticals is considered as the mean velocity of the water between these
verticals. The area between the verticals having been determined,
the discharge through this portion of the cross-section of the stream
is the product of this area and the mean velocity. The sum of all
discharges between successive verticals is the total discharge.

The mean velocity in the vertical may be obtained by taking
the mean of several velocity measurements. This method is more
laborious, however, and does not give the mean velocity appreciably
more accurately than that obtained by taking the mean of velocities
at 0.2 and 0.8 of the depth.

The distribution of velocities in an ice-covered stream, Fig. 108,
is modified by the effect of friction between the water and the ice.
The amount of this friction exceeds the skin friction of a free water
surface and the maximum velocity therefore occurs nearer mid-
depth. The mean velocity in the vertical for an ice-covered
stream is not at 0.6 depth but the mean of velocities at 0.2 and 0.8
depth gives approximately the mean velocity the same as for a
stream with a free-water surface.

111. Energy Contained in Water in an Open Channel —This
subject has been discussed (Art. 72) in connection with the velocity
of approach for weirs, and the energy of water in a pipe is discussed
in Art. 92. In open channels where velocities in different parts of
a cross-section are not the same, the total kinetic energy contained
in the water flowing past any cross-section is

KE"Wzg’ ........(1)

W being the total weight of water passing the cross-section in one
second, v the mean velocity, and « an empirical coefficient depend-
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ing for its value upon the distribution of velocities in the channel
but always greater than unity. The range of variation in a has
not been determined but in channels with unobstructed flow it
probably lies between 1.1 and 1.2. This matter is not of great
importance in ordinary hydraulic problems. Velocity head in
open channels is commonly taken as the head due to the mean
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Fi1G. 108.—Velocities in ice-covered stream.

velocity, that is, « is assumed to equal unity. The slight error
introduced by this assumption may be partially eliminated by a
proper selection of coefficients.

112. Continuity of Flow in Open Channels.—In any open
channel fed by a constant supply of water there is the same rate of
flow past every cross-section. In pipes flowing full, Art. 93, since
water is practically incompressible, it is not necessary that the
supply be constant in order to have the same rate of flow past
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every cross-section at the same instant; but in open channels
the water is not confined and a variation in the rate of supply will
cause unequal rates of flow past different sections of the channel.
In other words, in order to have continuity of flow in an open
channel it is necessary at the same time to have steady flow, but
in pipes flowing full there is always continuity of flow regardless of
whether the flow is steady or variable.
~ When continuity of flow exists in an open channel, the mean
velocities are equal at all cross-sections having equal areas but if
the areas are not equal the velocities are inversely proportional to
the areas of the respective cross-sections.
Thus, if a; and 1, and az and v; are respectively areas and mean

Fi1a. 109.—Open channel with accelerating velocity.

velocities at any two cross-sections in an open channel where con-
tinuity of flow exists,

a1v; = aagv2
and
V1 _ Q2
V2 a1°

113. Loss of Head.—Figs. 109 and 110 represent channels of
constant cross-sections receiving water at uniform rates from
reservoirs. Potential energy changes to kinetic energy as move-
ment of the water takes place. As the water flows down these
channels a portion of the energy is lost by friction between the
water and the surfaces of the channels. If there were no friction
losses of any kind the velocity, v at any section, s, would be
v:=V/'2gh, in which h is the vertical distance between the water
surface in the reservoir and the water surface at the section of the
channel. The velocity of the water would thus continue to accel-
erate as long as the downward slope of the channel continued.
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The actual conditions of flow as modified by friction for the
case illustrated in Fig. 109 are as follows. The water receives a
certain initial velocity at a, (Art. 85) where the channel leaves the
reservoir. This channel, as indicated in the figure, has a slope
steeper than is required to carry the water with the initial velocity
which it receives at a. The velocity therefore accelerates for some
distance, but a portion of the energy which the water contains is
used in overcoming friction. As the water proceeds down the
channel at a continually increasing velocity, a point is finally
reached (since frictional resistance increases with the velocity, as
has already been shown for pipes and will be shown for open
channels) beyond which the energy used in overcoming friction in
any reach exactly equals the potential energy contained in the
water within the reach by reason of the slope of the channel.
After this point has been reached, approximately at b in the figure,

F1a. 110.—Open channel with constant velocity.

the water will flow to ¢ and beyond with a constant velocity as long
as channel conditions remain unchanged. As water moves from
a to b a portion of its potential energy is continually being changed
to kinetic energy and the remainder is used in overcoming friction.
Between b and ¢ the kinetic energy remains constant and all of
the potential energy is used in overcoming friction.

Fig. 110 illustrates the case where the slope is no greater than is
required to carry the water at the initial velocity which it receives
at a. Under these circumstances, as long as the channel conditions
remain constant, the velocity in the channel will be the same at all
sections. In other words the potential energy of the water will all
be used in overcoming friction and the kinetic energy will remain
constant. This case is the one most commonly encountered in
open channel problems.

In this connection it is important to bear in mind that the
velocity remains constant only so long as the channel conditions
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remain constant. Any change in the size of the channel changes the
velocity. An increase or decrease in the slope of the channel
causes a corresponding increase or decrease in velocity. The
velocity is also modified by any conditions affecting frictional
resistance. « It will be noted that velocity conditions for open
channels are different than for pipes. In a pipe flowing full, under
a constant head, the water being confined and considered incom-
pressible, the mean velocity can change only when the diameter of
the pipe changes. In an open channel, however, the water being
unconfined, the velocity changes with every change in channel
conditions.

Losses of head in open channels are in every respect analogous
to losses of head in pipes. In addition to the loss of head due to
friction between the moving water and the surface of the channel
there is a loss of head wherever the velocity of water or direction of
flow is changed. The same symbols will be used to represent
losses of head in open channels that are used to designate the cor-
responding losses in pipes (Art. 94). These losses for open channels
are as follows:

(a) A continuous loss of head throughout the channel due to
friction between the moving water and the surface of the channel
and to viscosity. This loss is commonly referred to as the loss of
head due to friction.

(b) A loss of head at entrance to the channel, that is, where a
channel takes water from a reservoir or other body of compara-
tively still water.

(c) A loss of head at discharge, that is, where a channel dis-
charges into a reservoir or other body of comparatively still water.

(d) A loss of head due to contraction where a channel changes
to a smaller cross-sectional area causing an increase in velocity.
The loss of head at entrance to a channel (referred to under (b)
above) is a special case of this loss.

(e) A loss of head due to enlargement where a channel changes
to a larger cross-sectional area causing a decrease in velocity.
The loss of head at discharge (referred to under (c) above) is a
special case of this loss.

(f) A loss of head due to obstructions of any kind in a channel,
such as gates, bridge piers or submerged weirs.

(9) A loss of head due to curves in a channel in addition to the
loss which occurs in an equal length of straight channel.
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114. Hydraulic Gradient or Water Surface.—The hydraulic
gradient (Art. 95) of an open channel coincides with the water sur-
face. In the case of steady, uniform flow, the water surface is
parallel to the bottom of the channel. Any changes in channel
conditions which will cause either an increase or decrease in
velocity will cause a change in the elevation >f the water surface
the same as a change in velocity in a pipe will cause a change in
the hydraulic gradient. Changes in the hydraulic gradient
of a pipe line resulting from changes in section are frequently
of minor importance and need be considered only insofar as
they affect the total loss of head, while for an open channel the
effect of any changes in the cross-section should be thoroughly
understood and designs for the transition of the water from one
velocity to another, should be worked out with great care.

Failure to provide properly for changes in elevation of water sur-
face at the place where such changes occur may make it necessary
for the channel to carry water at a depth other than that for
which it was designed and thus interfere with its satisfactory
operation. . . )

116. Loss of Head Due to Friction in Open Channels.—Fig.
111 represents the condition of steady, uniform flow in a straight
channel. Since all of the head, &y, is used in overcoming friction in
the distance, [, this lost head is a measure of the resistance to
flow. The ratio h,/l is called the slope, and is represented by the
symbol s. Since friction losses in open channels and pipes are
of the same character they are governed by the same laws. To
make the general laws as stated for pipes on page 145 apply to open
channels it is necessary only to substitute, respectively, the words
channel and hydraulic radius for pipe and diameter. It is evident,
therefore, that the base formulas for pipes apply equally to open
channels. Formula (14), page 146, is in the form generally used
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for open channels. For convenience of reference it is here
repeated. .

v=K""v%. . . . . . . . . (2

The further consideration of friction losses in open channels
must be purely empirical. Numerical values of empirical coef-
ficients and exponents and, if necessary, modifications in the
form of the base formula must be derived from experimental data.
A few of the more commonly used open channel formulas are
given in the following pages.

116. The Chezy Formula.—This formula as stated in the pre-
ceding chapter (Art. 97) is, with proper modification, applicable
either to open channels or to pipes, though it was originally
designed for open channels. The formula as written by Chezy is

v=CVrs, . . . .. .. (@

in which » is the mean velocity, r is the hydraulic radius, and s is
the slope of water surface. The Chezy formula is of the same form
as formula (2); y and z each being equal to 3 and C being written
for K’””. The value of the coefficient C varies with the character-
istics of the channel. In the form given it is not therefore readily
adaptable to open channels but with modifications it forms the
basis of most of the formulas in common use.

117. The Kutter Formula.—An elaborate investigation of all
available records of measurements of flow in open channels was
made by Ganguillet and Kutter,! Swiss engineers, in 1869. As a
result of their study they deduced the following empirical formula,
commonly called the Kutter formula, for determining the value of

C in the Chezy formula.

0.00281 , 1.811
T

41.654 p n
C= S )
n 0.00281
1+—(41.65
+\/?( + 8 )

In the above formula, C is expressed as a function of the hydraulic
radius, r, and slope, s, as well as the coefficient of roughness, n, whose
value increases with the degree of roughness of the channel.

1 GangulLLET and KuTTER: Flow of Water in Rivers and Other Channels.
Translation by HERRING and TRAUTWINE, John Wiley & Sons, Publishers.
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VaLuEs oF C FroM KUTTER'S FORMULA

Slope

Hypravric Rap1us r IN FEET

0.2

0.4

0.6

0.8

1.0

1

2.0
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4.0

6.0

8.0

10.0j15.0
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76
65
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55
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148
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213

0.
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131
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130
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75

48

173

178

0.

137
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178

118
104
88
70
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103
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115
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70
59

110

192
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132
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178
149
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89
70
59
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76
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39
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172
142
113
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Some of the values of 7 as published by the authors of the formula

are as follows:

7 =0.010 for well-planed timber or neat cement;

n=0.012 for common boards;

7=0.013 for ashlar or neatly joined brickwork;

n=0.017 for rubble masonry;

7n=0.020 for canals in firm gravel;

n=0.025 for canals and rivers in good condition;
7 =0.030 for canals and rivers with stones and weeds;

n=0.035 for canals and rivers in bad order.

The above values do not include all present construction mate-
rials, and later experimental data have shown the need of revising

HorToN's VaLuEs oF THE COEFFICIENT OF ROUGHNESS, n, FOR KUTTER’S

AND MANNING'S FORMULAS

RANGE OF VALUES

: Commonly
Surface * used
From To values
Vitrified sewer pipe. .................... 0.010 0.017 0.013
Common clay drain tile. ................ 0.011 0.017 0.014
Glazed brickwork....................... 0.011 0.015 0.013
Brick in cement mortar. ................ 0.012 0.017 0.015
Neat-cement surfaces................... 0.010 0.013
Cement-mortar surfaces. ................ 0.011 0.016 0.015
Concrete pipe........cooovviiinnnnnn... 0.012 0.016 0.015
Plank flumes, planed.................... 0.010 0.014 0.012
Plank flumes, unplaned. ............... .| 0.011 0.015 0.013
Plank flumes with battens............... 0.012 0.016 0.015
Concrete-lined channels. ................ 0.012 0.018" 0.015
Rubble masonry....................... 0.017 0.030
Dryrubble.......................t. 0.025 0.035
Ashlar masonry........................ 0.013 0.017
Smooth metal flumes.................... 0.011 0.015
Corrugated metal flumes. . .............. 0.022 0.030
Earth canals in good condition........... 0.017 0.025 0.0225
Earth canals with weeds and rocks. .. .... 0.025 0.040 0.035
Canals excavated inrock................ 0.025 0.035 0.033
Natural streams in good condition. . . ..... 0.025 0.033
Natural streams with weeds and rocks....| 0.035 0.060
Sluggish rivers, very weedy.............. 0.050 0.150
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them. A more complete list of values of “Kutter’s n,”
based upon later data and practice, and showing the probable
ranges of variation has been prepared by Horton, extracts from
which are tabulated on page 187.

The solution of the Kutter formula may be obtained from
tables which usually accompany the formula. The use of the
Chezy formula with the Kutter coefficient thus becomes much
simplified. A short table of values of C corresponding to different
values of r, s, and n is given on page 186. Interpolations are
necessary in using this table. )

118. The Manning Formula.—This formula was first suggested
by Manning ! in 1890. His study of the experimental data then
available led to the conclusion that the values of the exponents
y and z (formula (2)) which best represented the law of flow in
open channels were, respectively 3 and 3. Expressed in English
units the Manning formula is

_1.486
T

a1 ()

v

This may be considered as the Chezy formula with

1.486
n

q=

The coefficient of roughness, 7, is to be given the same value as n
in the Kutter formula. The values of n applicable to different
channel conditions are tabulated on page 187. Expressed in metric
units the Manning formula is

v=%r%s”. N )

119. Comparison of Manning and Kutter Formulas.—Using
the same value of 7 in each case, the Kutter and Manning formulas
give identical results for r=1 meter=3.28 feet. This may be
proved by substituting 3.28 for r in each formula. It will be found
that each formula then reduces to

1 RoBERT MaNNING: Flow of Water in Open Channels and Pipes. Trans.
Inst. Civ. Eng. of Ireland, 1890, vol. 20.
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Since s does not appear in this equation, it follows that when r
equals 1 meter, the Kutter formula gives the same value of C
for all slopes. ‘

Further investigation shows that for hydraulic radii less than
1 meter, with the same value of » used in each formula, the Kutter

‘formula gives somewhat higher values of C than the Manning
formula. For hydraulic radii greater than 1 meter the values of C
obtained by the Kutter formula are in some cases slightly less and
in others slightly greater than the values obtained by the Manning
formula.

It has been found, however, from several hundred gagings of
open channels which were made under a wide range of conditions
as regards shape, size and variation in roughness that the proper
values of n to be used in the two formulas are so nearly identical
that for all practical purposes the same values may be used. In
other words, with the same value of n, problems solved by means
of one of the formulas will give results agreeing very closely with
those obtained by using the other formula.

The Kutter formula has for many years been the most widely
used of all of the open-channel formulas. It has been used almost
exclusively in the United States and England and more commonly
than any other formula in other parts of the world. The Manning
formula has been used for a number of years, in Egypt, India, and
Australia and quite recently many American engineers have come
to see its advantages over the more cumbersome Kutter formula.

It is because of the established use of the Kutter formula and
the general familiarity of engineers with the type of channel
represented by different values of “ Kutter's n’ that there
is an advantage in including n in the Manning coefficient.
Expressed as it is, engineers familiar with the Kutter formula may
adopt the Manning formula without the necessity of familiarizing
themselves with a new coefficient, and at the same time get prac-
tically the same results as with the formula with which they are
familiar. .

Very evidently the Manning formula could be written

v=Kr¥s¥% . . . . . . . . T

and values of K could be selected for different types of channels
the same as values of n are now selected. It is to be hoped that
this form of the formula will eventually come into general use, and
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that the present form will be simply a step in the transition from
the use of the Kutter formula to the use of the simplified form of the
Manning formula. In order to assist in determining K in terms of
n the following table of values is given:

ManniNG’s K 1N TERMS OF n. K=1'486
n
n K n K n K n K n K n K
0.009| 165 (0.016] 93 |/0.023( 65 {|/0.030] 50 ||0.044] 34 [(0.070| 21
.010| 149 || .017| 87 .024| 62 .032| 46 .046| 32 .075] 20
.011] 135 || .018| 83 .025| 59 .034) 44 .048] 31 .080| 19
.012( 124 || .019| 78 .026{ 57 .036] 41 .050; 30 .085| 18
.013| 114 || .020 74 .027| 55 .038| 39 .055 27 .090{ 17
.014| 106 || .021] 71 .028| 53 .040( 37 .060f 25 .095| 16
.015] 99 || .022| 68 .029( 51 .042( 35 .065] 23 .100] 15

The Kutter formula shows C to be a function of the slope, s,
while the Manning formula does not. The terms involving s in the
Kutter formula were introduced to make the formula agree with the
measurements of flow of the Mississippi river by Humphreys and
Abbott. These measurements have since been shown to be in
error by at least 10 per cent and to this extent the Kutter formula
is based upon incorrect data. Later experiments do not verify
the conclusions of Ganguillet and Kutter regarding this matter.
The value of C in the Kutter formula is not materially affected
by the s terms unless the slope is very small, much smaller than is
ordinarily used in designing channels, and so the formula has
been satisfactorily uscd for the conditions ordinarily encountered
in practice. It is probable that the Kutter formula would have
been more satisfactory for all channels, including those with very
small slopes, with the ‘“s’’ terms omitted. That this is so is
shown quite conclusively by some recent experiments on flow in
the Chicago drainage canal.!

The foregoing discussion may be summed up briefly with the
statement that the Manning formula is much simpler to use than
the Kutter formula and that, with the same value of n, it gives
practically the same results as the Kutter formula except for flat

1 MurraY BrancuARD: Hydraulics of the Chicago Sanitary Districts
Main Channel. Journal of the Western Soctety of Engineers, Sept., 1920.
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slopes. In the latter case the Manning formula appears to give
more accurate results than the Kutter formula.

120. The Bazin Formula.—This formula, first published! in
1897, like the Kutter formula, determines the value of C in the
Chezy formula. It considers C to be a function of r but not of s.
Expressed in English units the formula is

157 .6
c==2 ... ®

m
1+7;

in which m is a coefficient of roughness. Values of m given by
Bazin are

m=0.109 for smooth cement or planed wood;
m=0.290 for planks, ashlar and brick;

m=0.833 for rubble masonry;

m=1.540 for earth channels of very regular surface;
m=2.360 for ordinary earth channel;

m=3.170 for exceptionally rough channels.

The Bazin formula is used extensively in France but it has not
been generally adopted in other countries. The value of m is
subject to fully as wide a variation as n in the Kutter or Manning
formulas. :

121. Open-channel Formulas in General. — The Kutter,
Manning, and Bazin formulas are the best known and most widely
used of the open-channel formulas. There are a large number of
other formulas which have been published, and many of these
doubtless possess merit. It is not ordinarily advisable, however, to
use any except the commonly accepted formulas unless there is
very good reason for so doing. The successful use of any open-
channel formula requires an accurate knowledge of conditions, and
judgment in the selection of coefficients. Even the most expe-
rienced engineers may expect errors of at least 10 per cent in select-
ing coefficients with corresponding errors in their results.

122. Detailed Study of Hydraulic Gradient or Water Surface.
—In the investigation of minor losses in pipes, Art. 102, it has been
shown that these losses may be added collectively to the loss of
head due to friction and that this sum, which represents the total

1 Annales des Ponts et Chaussées, 1897.
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lost head, may be considered as a unit. The losses of head for
open channels are similar to those for pipes with the exception
that they must be provided for at the places where they occur.

Losses of head in open channels which result from changes in
velocity may be expressed as functions of the velocity head the
same as for pipes. Thus,

—;5, he=K, %, h¢=K,g, ete. ‘

in which v is the mean velocity in the channel having the smaller
cross-sectional area. While these losses of head for open channels
are frequently of much greater importance than the similar losses for
pipes, the values of coefficients for determining them are not so
well established. More experimental data in this field are needed.

ho=Kpy

DUULLANANATAARUAR NN AN EU R TN L AR AR RN
N
N

Fi1G. 112.—Change of channel to smaller section.

Fig. 112 shows the change in water surface resulting from con-
tracting the cross-sectional area of a channel. The mean velocity in
the larger channel is v; and in the smaller channel ». It is assumed
that the grades of the two channels are just sufficient to maintain
these velocities; that is, there is unifcrm flcw in each channel.

Kinetic energy is always obtained at the expense of potential
energy. Inany open channel the drop in water surface, k in Fig. 112,
occurring at any change in section measures the loss in potential
energy resulting from the change. A portion of h, h, in figure, is
used in producing kinetic energy, that is in increasing the velocity
of the water. The remainder, h., is the head used in overcoming
friction losses at the place where the change in velocity occurs.
Referring to the figure,

v2 2

h,=—2;—27. . . . .. . e . . e (9)
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in which » and v, are the mean velocities in the smaller and larger
channels respectively. This expression is also obtained by writing
Bernoulli’s equation between points in a filament on either side of
the change in section when equal velocities at all points in a
cross-section are assumed for each channel.

From the figure
v? 012

% 2
and in a manner similar to that employed for losses due to contrac-
tion in pipes

2
hc—KC2—g..........(11)

and substituting this value in equation (10)

22 o
22 2% -
There are no experimental data from which K, for open channels
can be determined but it appears reasonable that it may have a
value corresponding to that for contractions in pipes. The max-
imum value for a sharp-cornered entrance may thus be taken as
0.5 with a smaller value for a rounded or tapered entrance. With
care in design the value of K. may be reduced very nearly to zero.
Under the most favorable conditions where K, is zero, the differ-
ence in elevation of water surfaces will be k,. This drop in water
surface should always be provided for when a canal changes to
a smaller section.

Ezample.—Assume entrance conditions, such that K.=0.25;
the velocity in the upper channel, »; =2.0 ft. per second; in the
lower channel »=8.0 ft. per second. Determine the drop in water
surface. From equation (12)

82 82 22
64327 64.32 64.32

If a canal discharges from a reservoir or other body -f com-
paratively still water the conditions are the same as above except
that »; may be considered zero. In the above problem v; could
have been considered zero without materially affecting the result.

Fig. 113 shows the change in water surface resulting from enlarg-
ing the cross-sectional area of a channel. The mean velocity in the

h=K, (12)

h=0.25X

=1.18 ft.



194 FLOW OF WATER IN OPEN CHANNELS

smaller channel is » and in the larger channel v;. It is assumed
that the slopes of the two channels are just sufficient to maintain
these velocities.

The velocity v being greater than », there is a loss in kinetic
energy with a resultant gain in potential energy. If there were no
loss of energy from friction, all of the kinetic energy in the smaller
channel in excess of the kinetic energy in the larger channel would
be converted into potential energy, and the water surface in the
larger channel would be at a distance h, above the water surface
in the smaller channel. Since some energy is required to overcome
friction and turbulence losses where the transition in velocities
occurs, the actual elevation of water surface in the larger channel
is lower than it would be if there were no friction losses, or, as
indicated in the figure, at a distance, h, above the water surface
in the smaller channel. The vertical distance k,=h,—h thus rep-

ANy ANINY =\

Fia. 113.—Change of channel to larger section.

resents the loss of head due to enlargement. This may be expressed
algebraically as follows:

02 1)12
=-2—g-7g; s e e e e e e . (13)
also 2
1
h—h,—he—@—%—h., N ¢ 7))
and substituting K.% for h, the formula may be written,
p=log 2w (15)
2 Keog725 - e

There are no satisfactory experimental data giving values of K..
In general, however, it is known that for abrupt changes in velocity,
very little of the kinetic energy in the smaller channel is con-
verted into potential energy. In other words nearly all of this
energy is lost in friction and turbulence and there is little differ-
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ence in elevation in the water surfaces in the two channels. In
this case K, approaches very near to unity. By exercising care
in design and construction and making velocity changes gradual
50 as to produce a minimum of turbulence the value of K, may be
greatly reduced.

It should be remembered that equations (9) to (15) are approx-
imations in that they assume the kinetic energy in each channel to
be that due to the mean velocity, that is, they assume equal
velocities at all points in a cross-section for each channel. This
is equivalent to assuming « in equation (1) to be equal to unity.
The error introducedy thereby isyhowever, of no great importance,
especially in view of the fact that a correction for this error is
necessarily included in the empirical values selected for K. or K,.

The most common types of obstructions in open channels are
submerged weirs, gates, and bridge piers. Losses of head resulting
from weirs of all kinds and gates, which are types of orifices, are
treated in earlier chapters. These structures are commonly
employed to deflect water from main canals 10 secondary channels.

Bridge piers, Fig. 114, restrict the cross-sectional area of a chan-
nel and therefore obstruct the flow. The loss of head, k,, or what
amounts to the same thing, the amount that the water will be
backed up by piers is not
sufficient to be of any im-
portance except for com-
paratively high velocities.
The most important case
arises in determining the
backing-up effect of bridge

F1c. 114.—Bridge pier obstructing flow.

streams. The total loss of

head is made up of three parts; a loss of head due to contraction
of the channel at the upstream end of the piers, a loss of head
due to enlargement of the channel at the downstream end, and
an increase in loss of head dve to friction resulting from the
increase in velocity in the contracted portion of the channel.
On account of the higher velocity, the surface of the water
between the piers is depressed, the vertical distance, h, measuring
the increase in velocity head plus the loss of head. The distance
h—h, is a measure of the velocity head reconverted into static

head.
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The quantitative determination of losses of head from piers is
entirely empirical. Though many experimental data are available,
no satisfactory general formula for the solution of this problem is
known. In general, however, piers that are so designed as to allow
the changes in velocity to occur gradually with a minimum amount

. of turbulence, cause the smallest loss
| of head. Fig. 115 represents two
I horizontal sections of piers. Sec-
l tion A will cause less turbulence and

consequently less loss of head than

section B.
! Curves or bends in the alignment of
‘ a channel cause a loss of head. For
i low velocities such as occur in earth
canals the loss in head is slight and
I ordinarily no allowance is made for it
unless the curves are sharp and fre-.
quent. For sharp curves in concrete-
lined canals or flumes designed to
F_xg.' ;15.7Eﬁe9t of qhapf of carry water at high velocities, an
b;lleiece‘.nem I causing YU increase in the slope should be pro-
' vided. There are few experiments for
determining the loss of head in curves, but the data for bends in
pipes (page 163) may be used as a guide. Some engineers prefer
to correct for loss of head at curves by using a higher coefficient of

roughness.

123. Hydraulics of Rivers.—Open-channel formulas do not
apply accurately to natural streams since the channel sections and
slope of water surface vary and the flow is non-uniform. At the
lower stages, streams usually contain alternating reaches of riffles
and slack water. During high stages this condition largely dis-
appears and the water surface becomes approximately parallel to
the average slope of the bottom of the channel. The degree of
roughness of natural streams varies greatly within short reaches
and even within different parts of the same cross-section. This
may be seen from Fig. 116, which illustrates a stream in flood stage.
The channel of normal flow, abc, will probably have an entirely
different coefficient of roughness than the flood plain cde. Also the
portion of the left-hand bank, Fig. 116, lying above ordinary
high water may be covered with trees or other vegetation and have a

|

l
|
|
l



: IRREGULAR SECTIONS , 197

higher coefficient than the lower portion. Rocks and other channel
irregularities are frequent and cause varying conditions of turbu-
lence, the effect of which on the coefficient of roughness is difficult
to estimate.

There are, however, times when the engineer must estimate as
well as he can, the carrying capacity of a natural channel. This
is done by making a survey of the stream, from which cross-sections
may be plotted and the slope of water surface may be determined.
A certain reach is selected for which are obtained an average cross-
section and slope of water surface, the computations being based
upon these average values.

It is apparent that results obtained in this manner will be very
approximate, and that the degree of accuracy obtained will depend
largely upon the ability of the engineer to judge the effect of these
varying conditions upon the ‘
coefficient of roughness. Bet-
ter results will be obtained
for natural streams that
have fairly straight and uni-
form channels and are free Fiq. 116.—Natural stream in flood stage.
from conditions causing tur-
bulence. At the higher stages channel irregularities have less
effect upon the slope of water surface, and open-channel formulas
then apply more accurately.

124. Irregular Sections.—Open-channel formulas should not
be applied directly to sections having a break or-pronounced
irregularity in the wetted perimeter. Fig. 116, which illustrates
a stream in flood stage shows a break in the wetted perimeter
at ¢. That the open-channel formulas do not apply directly to
the entire cross-section in such a case may be shown by the
following example. The Manning formula is used, though any
of the other open-channel formulas will show substantially the
same results. Assume $=0.001; n=0.035! the length of- the
portion, abc, of the wetted perimeter =200 ft., and of the portion
cde=300 ft.; the area of the portion, abcm of the cross-section=
3000 sq. ft. and of the portion mcde=900 sq. ft. Then for the
entire cross-section, a=3900, p=>500, r=§=%§) =7.8, and by
the Manning formula, @=20,600 cu. ft. per second. The cross-
section may now be divided into the two portions, abem and
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mecde. Assuming the depth of water over the flood plain to be
3 ft., the wetted perimeter of the portion of the cross-section,
abom will be about 203 ft. Then r=7="0'~14.78 and from
the Manning formula, @=24,250 cu. ft. per second. This indi-
cates that a portion of the channel discharges more water than
all of it, which is clearly impossible.

Where an open-channel formula must be applied to an irregular
section such as that indicated in Fig. 116, it is necessary to divide
the cross-section into two portions and compute the discharges
for each portion separately. As the two portions of the channel
will differ in roughness, different coefficients should be selected for
each.

125. Cross-section of Greatest Efficiency.—The most efficient
channel cross-section, from a hydraulic standpoint, is the one
which, with a given slope and area, will have the maximum
capacity. This cross-section is the one having the smallest wetted
perimeter, since frictional resistance increases directly with the
wetted perimeter. This also may be seen from an examination
of one of the open-channel formulas. Take for example the
equation for @ as given by the Manning formula

1.486
Q== po

ar¥ig, . . . . . (16)

Under the assumptions made a, n, and s are constant. @ there-
. . . a .
fore increases with r. Since r=5, r increases as p decreases and

since @ varies only with r it is a maximum when p is a minimum.
It should be borne in mind in this connection that there are
usually practical objections to using cross-
sections of minimum area but the dimen-
sions of such cross-sections should be known
and adhered to as closely as conditions
appear to justify.
Fia. 117 —Semicircular of al-l (.:ross-se(.:tions, having a given area
channel. the semicircle, Fig. 117, has the smallest
wetted perimeter and it is therefore the
cross-section of highest hydraulic efficiency. Semicircular cross-
sections are sometimes used for concrete or brick channels but
they are not used for earth channels.
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Trapezoidal cross-sections, Fig. 118, are used more commonly
than any others. They are the only practical sections for earth
canals, and masonry and wooden conduits are usually of this form.
The rectangular section, usually used for wooden flumes, may be
considered as a special case of the trapezoidal section. Properties
of trapezoidal sections and methods of determining sections of
greatest efficiency are shown in the following analysis.

From Fig. 118,%=z and l—l;=y; or e=Dz and b=Dy. Then
p=@+2vVi+adD, . . . . . . (17
and
a=D%*(z+y), . . . . . . . . . (18
or
a
D—m..........(m)

(a) (b) (0)

F1a. 118 —Trapezoidal channels.

Substituting this value of D in equation (17),

=@y+2V 2L
p=lHaVIFA; ..
Equating the first derivative with respect to y to zero and reducing,
y=2V1+z22—2), . . . . . . . (2)
or
b=2D(Vi+z#—2). . . . . . . (22

From which may be obtained the relation between depth of
water and bottom width of canal of the most efficient cross-
section for any values of z.

From equations (17) and (18),

D%(z+y)

Daytovitd) (23)

a
—_=r=
p
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Substituting y from equation (21) and reducing
r=D/2, . . . . . . ... . (2

or, the cross-section of greatest efficiency has a hydraulic radius
equal to one-half the depth of water.

By substituting y from equation (21) in equation (20) and
reducing, the following expression is obtained

p=2VaVoVita—z, . . . . . (25
equating the first derivative with respect to z to zero and reducing
z= \/—1-§=tan 30°.

It may be seen from an examination of equation (22) that
when z=tan 30° the length of each side is equal to b, Fig. 118 (c)
and the section becomes a half hexagon. Thus, of all the trape-
zoidal sections (including the rectangle), for a given area, the half
hexagon has the smallest perimeter and it is therefore the most
efficient trapezoidal cross-section.

From equation (22) are obtained the following relations between
bottom width and depth (for different side slopes) for trapezoidal
cross-sections of maximum efficiency.

¢/D=z 0 1} 3 1 1} 2 3 4
b 2D 156D 124D 083D 061D 047D 0.32D 025D

A semicircle having its center in the middle of the water surface
may always be inscribed within a cross-section of maximum
efficiency. This is illustrated for a
trapezoidal cross-section in Fig. 119.
OA, OB, and OC are drawn from a
point O on the center line of the
water surface perpendicular to the
sides of the channel EF, FG, and
GH respectively. Let EF=GH =z;
FG=b; OA=0C=R; and OB=D. As before a=area of section
and p=wetted perimeter. Then from the figure

a=zR+%bD
p=2z+Db.

and
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And since (equation (24)) the hydraulic radius equals one-half the
depth of water

a_zR+3bD _12

p 22+b 2
From which

R=D.

That is, OA, OB, and OC are all equal and a semicircle with
center at O is tangent to the three sides.

126. Circular Sections.—The maximum discharge from a
channel of circular cross-section occurs at a little less than full
depth. This may be seen from an examination of open-channel
formulas. The discharge by the Manning formula is

Q= 148607’“8” ¢ 1)

a being the cross-sectional area. In the
investigation of a particular channel n and
s will be constant. From Fig. 120, R being
the radius of the circle,

360— ) )
p= 360 —arn— X27R
and
a=300"0 R 1R?sin 6. Fia. 120 —Circular
360 channel.

With these equations an expression for ar* may be written, dif-
ferentiating which and equating to zero, the value of § which
makes @ a maximum is found to be 57° 40’. The corresponding
depth of water is D=0.938d. Other open-channel formulas will
give substantially the same result. This means that a pipe carry-
ing water not under pressure, when free from obstructions and
laid on a true grade, will not flow full.

127. Non-uniform Flow.—In uniform flow the velocity past
all cross-sections in the channel is constant. This condition obtains
in ordinary conduits where successive cross-sections are uniform
in size and shape and the slope of water surface is parallel to the
bed of the channel. There are, however, certain cases where the
velocities are being accelerated or retarded, that is, the flow is
non-uniform, although the same quantity of water passes all
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cross-sections so that continuity of flow exists, or expressed by
symbols,
Q=a1v1 =azv2=azvs, ete.

An example of non-uniform flow is illustrated in Fig. 121, which rep-
resents a canal supplied by another canal or reservoir. Water
enters the canal at a certain initial velocity which may be computed
by the method described in Art. 85. There is a sudden drop in the
water surface at the entrance. The slope of the canal is greater
than that required to carry the water at its initial velocity and
the velocity therefore continues to accelerate until it becomes equal
to the velocity at which the channel will carry water under condi-
tions of uniform flow. ’

Fig. 122 which represents a canal connecting two reservoirs is

Fi1G. 121 —Non-uniform flow in channel with steep slope.

another example of non-uniform flow. The bottom of the canal
is on a slope different from that which the water surface will
attain. The total head producing flow is H. As before, there is a
drop in the water surface at the place where the water receives its
initial velocity. The same analysis applies to the two cases illus-
trated in Figs. 121 and 122.

This problem may best be analyzed by considering the channel
to be divided up into reaches A, B, C, etc., Figs. 121 and 122, the
computations being made for one reach at a time. There is a
certain degree of approximation introduced in doing this as com-
putations are based upon an average cross-sectional area, but by
reducing the length of reach considered any desired degree of
accuracy may be obtained. The following nomenclature is
used;
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l=length of reach considered;
s1 =slope of bottom of canal;
s=average slope of water surface in reach;
hy =fall of water surface in reach;
hy=1oss of lead due to friction in reach;
do=depth of water in upper end of reach;
di=depth of water in lower end of reach;
bo=Dbottom width of trapezoidal section at upper end of reach;
b1 =Dbottom width of trapezoidal section at lower end of reach;
vo=mean velocity at upper end of reach;
vi=mean velocity at lower end of reach;
v=mean velocity at middle of reach;
r=hydraulic radius of section at middle of reach;
z=slope of sides of canal for trapezoidal section;
n=coefficient of roughness in Manning’s formula.

ANANAANNRRRRRN S

F1a. 122.—Non-uniform flow in channel with flat slope.

From Bernoulli’s equation, assuming equal velocities at all points
in a cross-section.

vo® v?

h++=h+—+-. 26
From Manning’s formula,
%
=180 g 67%(1’) ;... @D
n l

and approximately, putting »=13(vo+v1),

_In2(vo+v1)?
=8 835 - - (28

Substituting this value of &, in equation (26) and transposing,

n? o’ +ln2(vo+vl)2 ,
2 2 883%

This is the general equation for non-uniform flow.

hi= (29)
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If the areas and wetted perimeters of the cross-sections at the
upper and lower ends of a reach and also the drop in water surface,
h1, are measured, the velocity at one end of the reach may be
expressed in terms of the velocity at the other end, as, for example,
vo=a—;?, and the other velocity, v, may be computed from
equation (29).

Similarly if @ and the cross-section at the upper end of a reach
are known, the cross-section at the lower end of a reach unay
be computed. Assume for example a trapezoidal cross-section.
Then

h1=do+811A—d1 « s e e e o o e o (30)
-9

vo—do(bo+zdo)’ B (1))
-9

vl_dn(bri‘ldl)’ e s e e e e e e o (32)

and for the average section,

e dO(bo+zdo)+d1(b1+z<_i£.
bo+b142(do+d1)V1+22

.. (33

In the right-hand members of the above equations b, and d; are
_the only unknown quantities, and one of these must be assumed.
The known quantities and the assumed value of b; or d; are then
substituted in these equations and the expressions for ki, vg, v1,
and r thus obtained are substituted in equation (29) which equation
may be solved for b; or d; depending upon which has been assumed.
Suppose for example that dj, the depth of water at the lower end
of the reach, has been assumed; b; is then computed. If the pro-
portions of canal section thus obtained are not satisfactory, a new
value of d; may be assumed and b; may be recomputed. Ordina-
rily the general form of the canal will be well enough known so
that recomputations will be unnecessary.

To get the dimensions of other cross-sections the above process
will be repeated, the section at the lower end of one reach becoming
the upper cross-section of the next reach below.

128. Backwater.—A common problem in non-uniform flow
occurs where water is backed up by a dam, weir or other obstruc-
tion. Usually it is required to determine the amount that the
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water surface will be raised at certain specified distances upstream
from the obstruction. Fig. 123 indicates a channel whose water
surface without the obstruction would be the line mn; with the
obstruction the water surface assumes the curved line abcde. This
latter line is called the backwater curve. 1t is required to determine
the position of sufficient points on the backwater curve so that it
may be plotted. ,

In this case the velocity is retarded but the general principles
are the same as for non-uniform flow with accelerating velocity,
and the same general method of solution may be followed. The
channel is divided up into reaches A, B, C, etc., as before, but
as the elevation of water surface at the obstruction is usually given
the computations are begun at this section and continued upstream.

Fia. 123.—Backwater.

This is not necessary, however, as the computations may be
begun at any section with a known elevation of water surface and
be carried either upstream or downstream. The nomenclature is
that given on page 203.

The general equation for non-uniform flow as given on page 203
is

_v?_ v nP(vo+01)?
M=o 2t B8

do, the depth of water at the upper end of the reach is the quantity
sought. With this determined the depth at the upper end of the
next reach may be obtained in the same manner. This problem
may be solved by equation (29) in a manner practically identical
with that described in Art. 126, the only difference being that the
computations proceed upstream instead of downstream.

One of the commonest applications of the backwater curve

(29)
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problem is to the determination of the elevations of points in the
backwater curve above a dam. This is necessary when the damage
which will result from submerging property during floods or the
effect of backwater on some power plant farther upstream, is to be
determined. Since in natural streams the channels are irregular,
average sections in each reach and also average velocities are used.
It is usual, therefore, to put the average velocity in the reach, v,
in formula (29) in the place of vp and vy, from which the follow-
ing simplified expression is obtained:

n2p2

=gt

(34)

This is simply a transposed form of the Manning formula, k; in
this case being equal to A,.

In solving backwater problems by this formula, @ and the
elevation of water surface at the lower end of reach A are usually
known. Then A; is assumed, from which a trial value of elevation
of water surface in the middle of the reach may be obtained. Based
upon this assumed elevation an average channel cross-section for the
reach may be plotted and the area and hydraulic radius determined.
Then k; may be computed and if this computed value of k; differs
from the assumed value sufficiently to materially affect the results
of the computations, a new assumption for 2; may be made and the
computations repeated until the assumed value of h; is as near as
is desired to the assumed value. With a little experience it will be
found that the first assumed value of h; will give the computed
value close enough without repeating the computations.

As considerable uncertainty exists in the selection of a proper
value of n and since the error thus introduced into the result is
raised to the second power any solution of this problem is neces-
sarily approximate.

129. Divided Flow.—Fig. 124 represents a channel divided by
an island. The total discharge, @, is given and it is required to
determine Q; and Q2, the portion of discharge going respectively to
channels 1 and 2, and also the total lost head ki, that is, the drop
in water surface from m to n. From the Manning formula

Chy w2

S—T=m, L (35)
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and since v=%, using subscripts 1 and 2 to refer to the respective

channels, )
Ql)
2( %1
hi_ " ( a1

n2.21n%’ - (36)

Fic. 124 —Channel divided by island.

Equating values of k; and reducing

_ . neain® [l
Q1=Q: nla2r2%\/l: e e e e .. (38)
Putting
_ngan ¥ |l
F _nlazrz"\/i’ B %))
Q:1=FQ:, N ¢ (1)
and since
Q = Ql + Q2, . . . . . . . . (41)
_ Q
Q2= irF - (42)

h1 may now be obtained by substituting @: and Q2 in formulas (36)
and (37).

In computing backwater curves where the channel is divided
by an island of considerable length it may be necessary to make
computations for separate reaches, as described on page 205. In
this case, @1 and Q2 may be determined approximately from
formulas (40) and (42) using an average cross-section for each
channel and with these discharges determined the slope, or rise in
water surface, h1, may be computed. If the values Q; and Q:
are correct, the computations should show h; the same for each
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channel. If the computed values of h; do not agree, the com-
putations should be repeated, reducing the discharge of the channel
for which the computations give the greatest value of k; and increas-
ing the discharge of the other channel by an equal amount. The
computations are repeated until they give approximately the same
values of h; for both channels.

It may be helpful, in order to reduce the number of trial
solutions, to plot values of @ against the error made in each assump-
tion. The method is similar to that for divided flow in pipes,
described on page 167.

The problem presented by channels having a flood plain,
Fig. 116 is similar to that of the channel divided by an island.
The flow over the plain should be computed separately from that
for the main channel, as discussed on page 207. If the total dis-
charge is known, @; and Q2 being respectively the portions of
the flow for the main channel and flood plain, formulas (40) and
(42) may be used to determine approximate values of @; and Qs.
With these approximate discharges determined, the two values of
h; may be computed, using the proper value of n for each channel.
If these values of h; do not agree the computations should be
repeated, correcting @; and Q2 and continuing the computations in
the same manner as that described above for channels divided by
an island.

PROBLEMS

1. An earth canal in good condition having a bottom width of 12 ft.
and side slopes of 2 horizontal to 1 vertical is designed to carry 180 cu. ft.
per second at a mean velocity of 2.25 ft. per second. What is the necessary
grade of the canal?

2. What is the capacity of the canal in Problem 1, if the grade is 2 ft.
per mile, all other conditions remaining the same?

8. Determine the depth of water in the canal, described in Problem 1,
if the grade is 2 ft. per mile, other conditions remaining as stated.

_ 4. Determine the bottom width of the canal having the same capacity
“and side slopes as the canal described in Problem 1, that will give the most
efficient section.

5. A circular concrete sewer 5 ft. in diameter and flowing half full has a
grade of 4 ft. per mile. Determine the discharge.

8. In Problem 5, what slope in feet per mile must the sewer have if the
mean velocity is to be 8 ft. per second when flowing full capacity?

7. A smooth-metal flume of semicircular cross-section, has a diameter of
6 ft. and a grade of 0.005. What diameter of corrugated metal flume will

be required to have the same capacity.
v
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8. An earth cansl carries a depth of water of 6 ft. The canal is 20 ft.
wide on the bottom and has side slopes of 1.5 horizontal to 1 vertical. s=
0.0002. Using a value of n of 0.025 compute the discharge by the Manning
formula and with this discha.rge determine the value of n in the Kutter
formula and also the value of m in the Bazin formula.

9. An earth canal is to be designed to carry 400 cu. ft. perseoondata.
mean velocity of 2.2 ft. per second. The sides of canal have a slope of
2 horizontal to 1 vertical. The depth of water is to be one-fourth of the bot-
tom width. Assuming that the canal will be maintained in good condition
find the necessary grade.

10. An earth canal in good condition carries 200 cu. ft. per second at &
velocity of 2 ft. per second. Side slopes of canal are 2 horizontal to 1 vertical.
The depth of water is one-third of bottom width of canal. This canal
discharges into a flume with a tapered entrance, the conditions being such
that the loss of head at entrance may be considered to be one-half of what
it would be for an abrupt change in section. The flume is 7 ft. wide and
has vertical sides. The slope of the bottom of the flume is such that it
carries a depth of water of 3.5 ft. Determine how much the bottom of the
flume should be above or below the bottom of the canal.

11. An earth canal containing weeds and grass has a bottom width of
15 ft. and side slopes of 2 horizontal to 1 vertical. The depth of water is
4 ft. and the slope is 2.75 ft. per mile. It is desired to change the section
to a semicircular concrete-lined channel having a slope of 1.5 ft. in 1000 ft.
Determine the radius of the semicircular channel if it flows full. If the

. change in section is abrupt and sharp-cornered, what will be the drop in
water surface where the change in section occurs?

12. An earth canal in good condition has a bottom width of 10 ft., side
slopes of 1.75 horizontal to 1 vertical, a grade of 0.00025, and carries 140 cu. ft.
per second. A gate is constructed at the lower end of the canal which dis-
charges freely into the air. The coefficient of discharge of the gate is 0.83.
The gate is to be 3.0 ft. high. How wide should the gate be to maintain a
constant depth of water in the canal?

18. A rectangular flume of unplaned timber connects two reservoirs
300 ft. apart. The flume is 16 ft. wide and both entrance and exit are sharp-
cornered. The bottom of the flume, which is on a level grade, is 5 ft. below
the water surface in the upper reservoir and 2 ft. below the level in the lower
reservoir. Determine the discharge.

14. A rectangular flume of unplaned timber carries water from a reser-
voir. The width of flume is 20 ft., the length is 1000 ft. and the slope is
1 ft. per 100 ft. If the entrance is sharp-cornered and the bottom of the
flume at the entrance is 4 ft. lower than the water surface in the reservoir,
determine the rate of discharge.

15. An earth canal in good condition is 60 ft. wide on the bottom and
has side slopes of 2 horizontal to 1 vertical. One side slope extends to an
elevation of 20 ft. above the bottom of the canal. The other bank, which
is a practically level meadow at an elevation of 6 ft. above the bottom of the
canal, extends back 500 ft. from the canal and then rises abruptly. The
meadow is covered with short grass and weeds. If the slope of the canal
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is 2.2 ft. per mile, determine the discharge when the water is 8 ft. deep in
the canal.

16. A flume built of planed lumber, with vertical sides, 8 ft. wide has a
grade of 2 ft. per 1000 ft. A sharp-crested weir 3.5 ft. high is constructed
across the flume. When the head of water over the weir is 3.1 ft., what
is the elevation of water surface at a section 200 ft. upstream from the weir?
How much higher is the water surface at this section than it would be with
the same quantity of water flowing but with the weir removed?

17. A canal carries 300 cu. ft. per second of water at a depth of 5.5 ft.
The water in this canal is to be dropped to a lower elevation through a
concrete chute of rectangular cross-section, having a grade of 1 ft. in 10 ft.
The chute is to carry a uniform depth of water of 3.0 ft., the width to vary as
required to maintain this depth. Determine the width of chute at entrance,
at 100 ft. below the entrance, and at 200 ft. below the entrance. Also
determine the minimum width possible for this depth of water.

18. A canal, 58,000 ft. long (580 Sta.’s), is to be constructed with a
capacity of 300 cu. ft. per second. The canal diverts from a river and
terminates at a reservoir into which it discharges. The water surface in
the river at the point of diversion is to be maintained at an elevation of
770 ft.

(a) Water is to be diverted through six head gates, having rectangular
orifices each 2 ft. by 5 ft. Determine the head required to force the water
through these openings, assuming a coefficient of discharge of 0.80.

(b) From Sta. 0 to Sta. 425 the canal is in earth section, having side
slopes of 2 horizontal to 1 vertical, and a depth of water of 0.3 of the bottom
width of the canal. Velocity of water is to be 2.1 ft. per second. Assume a
coefficient of roughness of 0.0225. Determine grade or slope of canal.

(¢c) Between Sta. 425 and 500 the canal is in rock and is to have a semi-
circular section lined with concrete, The grade of the canal is to be 2 ft. per
1000 ft. Coefficient of roughness, 0.014. Determine the head lost at
entrance, using a coefficient of velocity of 0.92. Also determine diameter of
canal section. : .

(d) From Sta. 500 to Sta. 580 the section of canal is the same as from
Sta. 0 to Sta. 425. At the reservoir end of the canal (Sta. 580) a weir is
to be constructed in order that a uniform depth of water may be maintained
throughout the entire length of earth section. Length of this weir is to
be equal to the bottom width of the earth canal. The weir has a rectangular
section, with horizontal crest 2 ft. 8 in. wide. Determine height of crest
above bottom of the canal.

(e) Tabulate the elevations of the water surface, to nearest 0.1 ft., at the
following stations: Sta. 0+10, Sta. 424490, Sta. 425410, Sta. 500 and
Sta. 5794-90. (Assume K,-1 at Sta. 500.)



CHAPTER XI
HYDRODYNAMICS

130. Fundamental Principles.—Newton’s laws of motion
form the basic principles of the subject of hydrodynamics. These
laws are clear and definite and lead to results that agree exactly
with experiment. Briefly stated they are as follows:

I. Any body at rest or in motion with a uniform velocity along a
straight line will continue in that same condition of rest or motion
until acted upon by some external force.

II. Any change in the momentum of a moving body is propor-
tional to the force producing that change and occurs along the
same straight line in which the force acts.

ITI. To every action there is always an equal and opposite "
reaction.

These three laws of Newton’s are frequently referred to as the
Laws of Inertia, Force, and Stress, respectively. The solution of
practically any problem in hydrodynamics may be accomplished
by the direct application of these laws. It is therefore essential
that a clear conception be had of their full significance. As an aid
in acquiring this conception the following discussion is presented.

131. Interpretation of Newton’s Laws.—Newton’s first law of
motion is merely a statement of the now well-known fact that
matter is inert; that is, it possesses no ability, per se, to change its
condition of rest, or motion, and that any such change must be
brought about through the action of some external force, as for
instance, friction of the air in retarding the velocity of a bullet.

Since change in motion results from the application of a force
it may be assumed that the magnitude of the change in motion
will depend upon the magnitude of the force producing that

_change; in other words it may be assumed that there is, as usual,
a direct relation between cause and effect. Making this assump-
tion, the second law follows naturally from the first. Momentum
is by definition quantity of motion, and is equal to the product of
211
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the mass and velocity. Designating by Z;, the momentum of a
mass of water, M, having a velocity v;.
Z 1= M V1.

If a force P acting upon this mass for a time At changes the
velocity to v2.

Zz = M v2,
and
Zz—-Z1=M(v2—vl), e e e e e . (1)
or
AZ=MAv,
and 7
A Av
H—MH_P’ B )
since %=acceleration, and mass times acceleration equals force.
Equation (2) may be written in the form,
M
P —A_t Av, e e e e e e e . (3)

" or substituting for Av its equivalent (v2—v1) and letting At equal 1
second, equation (3) becomes,

P=M(@—v). . . . . . . . (4

This means that when a force acts upon a mass and thereby
changes its velocity from v; to vz, the force is equal to the product
of the mass whose velocity is changed each second from »; to ve,
and the change in velocity.

This may be demonstrated in another manner. The amount
of work done upon any mass is equal to the gain in kinetic energy,
or

2
Pl=————=l‘—2{(vz—vl)(vz+vl), e o o (5)
in which [ is the distance through which the force P acts upon the

mass M. But
l=<"2—’;ﬂ)t. oL .. ®

Therefore, from equations (1) and (2)
Pt=M(@z—v1), + ¢« « « « . . (D
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or letting £=1 second,
P=M@z—vy). . . . . . . . 4

It should be kept clearly in mind that P is the force acting
upon the mass whose velocity is changed from v; to v2. Newton’s
third law of motion states that the mass reacts with a force equal
in magnitude but opposite in direction to the force P. To avoid
confusion the reacting force that water exerts upon an object will
be designated by F. Hence

F=—P=—M@2—v))=M(v1—w). . . . (8

Since force and velocity are vector quantities, it follows that if
a jet of water impinges against a vane which is either moving or at
rest and thereby has its velocity in any direction changed, & force F
is exerted upon the vane whose magnitude in any direction is equal
to the change in momentum per second that the jet undergoes
in the same direction. In other words the force F is equal to the
mass impinging per second times the change in velocity in the
direction of the force. The X- and Y-components of the force
exerted by a jet whose path lies in the XY plane will therefore
be,

F.=Mass impinging per second X change in velocity along the
X-axis.

Fy=Mass impinging per second X change in velocity along the

Y-axis.

F=VF2ZIFg,
and the tangent of the angle which this resultant makes with the
X-axis is 5

F, :

The change in velocity may be either positive or negative, the
only difference being that in the case of a decrease in velocity the
dynamic force exerted by the water on the vane is in the same
direction as flow, whereas in the case of an increase in the velocity
the dynamic force exerted on the vane is opposed to the direction
of flow. For instance, referring to Fig. 127, the flow being from
the left and the X-component of the velocity being decreased, F;
is directed toward the right, whereas the Y-component of the
velocity being increased and the flow being directed upward, F, is
directed downward.
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132. Relative and Absolute Velocities.—Strictly speaking, all
motion is relative. No object in the universe is known to be fixed
in space. An airplane is said to be flying one hundred miles per
hour but this is its velocity only with respect to the surface of the
earth beneath it. The earth’s surface itself is moving at a tre-
mendous speed both with respect to its axis and to the sun, each
of which are whirling through space at a still greater rate.

It is nevertheless convenient in connection with this subject
to consider all motion with respect to the earth’s surface as abso-

\

ve u Ya (3
b B R -
A |u N i va ve
T16. 125.

lute motion. The airplane above referred to has therefore an abso-
lute velocity of 100 miles per hour. Another plane in pursuit may
have an absolute velocity of 120 miles per hour but its relative
velocity with respect to the first plane is only 20 miles per hour.
If the two planes were to fly in opposite directions, each retaining
its same absolute velocity, the relative velocity between them
would be 220 miles per hour, If they were to fly at right angles to
Y each other their relative ve-

locities would be V100241202

Y T =156.2 miles per hour.

Since velocities are vector
quantities, these results may
be obtained graphically as in
Fig. 125, in which,

v4 ig the absolute velocity
of A,

vgp is the absolute velocity
of B, and

u is the relative velocity of
either with respect to

Fro 1 ; . the other.
. 126.—Jet impingi inst a flat
1G € 1m;};1:1egmg against a 133. J.e t Im . Y N or-
mally on a Fixed Flat Plate.—

Fig. 126 shows a jet impinging at right angles against a fixed flat
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plate. Itis assumed that the plate is large enough with respect to
the size of the jet so that the jet is deflected through a full 90°.
The pressure exerted on the plate varies from a maximum at the
axis of the jet where it is very nearly equal to that due to the full
velocity head, to zero at a distance approximately equal to the
diameter of the jet from its axis. The total pressure exerted is
equal to the product of the mass impinging per second and the orig-
inal velocity of the jet, since the final velocity of the water as it
leaves the plate has no component in its original direction.
Hence, the force exerted on the plate is,

F=My=""2p=""0 . . . . . .(9
vgv: 9

where M and Q represent respectively the mass and quantity
striking the plate per second, and a and v are the cross-sectional
area and mean velocity of the jet, all terms being expressed in
the foot-pound-second system.

134. Jet Impinging Normally on a Moving Flat Plate.—Con-
sider the case of a jet impinging normally against a flat plate mov-.
ing in the same direction as the jet or at least having a component
~ of its motion in that direction. It is assumed that the plate has
a uniform velocity, being restrained from accelerating by some
external agency. The mass impinging per second is

A
e )

g g

where Q' is the quantity of water striking the plate in cubic feet
per second, a is the cross-sectional area of the jet in square feet and
u is the relative velocity of the jet with respect to the plate. The
change in velocity is »—v'=u, since the velocity in the direction
of the force is changed from v to v’ and the jet leaves the plate
tangentially with a velocity whose X-component is equal to the

velocity of the moving plate. The force acting on the plate is
F= My =200 _wa (11)

. g g

1356. Jet Deflected by a Fixed Curved Vane.—The jet, shown
in Fig. 127, is deflected through an angle 6 by a fixed, curved,
trough-shaped vane AB. It is assumed that the vane is so smooth
that friction may be neglected so that the velocity with which the




216 HYDRODYNAMICS

jet leaves at B may be considered the same as that with which it
strikes at A. It is also assumed that the vertical height of the
vane is so small that gravity will not appreciably retard the velocity
of the jet. Considering the horizontal and vertical components
of the force acting on the vane,

F;=M(v—v,) =1—eg—v(v—v cos 6) =1—€%—02(1—cos 0, . (12

F,=M(o—v,)=-'%’(vsin o)=—%2sin 6. . . (13

F16. 127 —Jet impinging-on a fixed ~ Fia. 128.—Jet impinging on a curved,
curved vane. moving vane.

The negative sign in equation (13) means that the force, F,,
is exerted in a direction opposite to »,, or in other words, down-
ward.

The resultant force is

F= \/F?+F,2=7%2\/2(1—cos 5 = 2war®

sin0 . (14)

If the angle of deflection is greater than 90°, cos 6, in equation (12)
becomes negative. If the jet is deflected through a full 180°,
6= —1, and sin §=0, and the equations become

_F,=2Mv=2“’;”2, N e 1)

F,=0. . . . . . . . ... (@6

136. Jet Deflected by a Moving Curved Vane.—Consider the
vane shown in Fig. 128 to be moving with a uniform velocity v’
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in the original direction of the jet. The absolute velocity of the
jet as it impinges at A is v and its relative velocity with respect
to the vane is v—¢'=u. The mass impinging per second is there-

fore w—:ﬁ Neglecting friction the relative velocity of the jet with

respect to the vane remains unchanged while flowing from A to B
so that the jet leaves the vane at B with a relative velocity u in
a tangential direction, the X-component of which is u cos 6.

The change in velocity along the X-axis is therefore u—u cos 6
or u(1—cos 6) and

w‘;“z(l—ooso). A 1))

Fz=

(%) (e)

Fic. 129.

In a similar manner the change in velocity in a vertical direc-
tion is from zero to u sin 6 and therefore

2
F,=—“’Lg“sino R ¢ )]

The absolute velocity and direction of the jet as it leaves the
vane are shown in Fig. 128 by the vector v, which is the result-
ant of the relative velocity u and the velocity, o', of the vane.

If a jet is directed against a double-cusped vane as shown in
Fig. 129 (a) so that half the jet is deflected by each cusp through
equal angles, F; will be determined by equation (17) but F, is zero
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gince the two Y-components balance being equal and opposite in
direction.

If a jet is deflected through a full 180° either by a single- or
double-cusped vane as shown in Fig. 129 (b) and (c), obviously,
for a stationary vane,

F,=F=2My=
and for a moving vane
F,=F=2M'u=

M, (19)

2wau?

(20)

If a series of vanes are so arranged on the periphery of a wheel
that the entire jet, directed tangentially to the circumference is
striking either one vane or another successively, the mass imping-

ing again becomes M =w%) and the force exerted is,

F,=w—:—vu(1—cos0),. .. ... @
F,=w—5-”usina. N )

It should be noted that when F, is radial, F; is the only com-
ponent of the force tending to produce rotation.

137. Work Done on Moving Vanes.—Since work is equal to
force times distance it is apparent that for a jet to do any work
upon a vane, the vane must be moving with a velocity between
zero and the velocity of the jet since at these limiting velocities
either the distance or the force is equal to zero. The question
then arises as to what velocity the vane should have, for any
given velocity of jet, to perform the maximum amount of work.

The amount of work done per second is the product of the
force acting in the direction of motion and the distance through
which it acts. Assuming that the direction of motion of the vane
is parallel with the direction of the jet, the force acting is (Art. 136),

—9")2
F,=wa(vTv)(1—coso), e s (23)

and the distance through which it acts per second is equal to the
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velocity of the vane, v’. Representing the work done per second,
expressed in foot-pounds, by G,

G%M(l—cosﬂ)v'. L@

Considering »' as the only variable in this expression and equat-
ing the first derivative to zero, the relation between v and »’ may
be determined for which G is a maximum.

@;wa(l—cos 0)(02—4vv’+3v'2)=0
oL a g ’
from which

v=v and 9=

R )

Wl e

When o’ =», no work is done since the force exerted is then
gero and this value represents a condition of minimum work.
For maximum work therefore v'=§.

In the case of a series of vanes so arranged that the entire jet
strikes either one vane or another successively, the force exerted
in the direction of motion, which is assumed parallel with the

direction of the jet is (Art. 136),

F,=1%w(v—v')(ll—coso). N )

The distance through which this force acts in one second is o',

and therefore,

G=%‘?1’(v—v')(1—coso)v'. N ¢1))

Differentiating, and equating to zero,

dG _way(1—cos 0) ®

o —2") =0,

and for maximum work

v =

(28)

Nl
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Substituting this value of ¢’ in equation (27),
war®

G=W(I—COSO)’ e s s e e e o (29)
or

. My

G=—4—(l—c080), e e e e s e (30)
which is (—l;?i) times the total kinetic energy available in the
jet. For §=180° this expression equals unity and

L € )

the total kinetic energy of the jet being converted into work.
This also appears from considering that the relative velocity of

the jet as it leaves the vane is 12), which is also the velocity of the

vane. These two velocities being equal and opposite in direction
have a resultant of zero. The water thus leaves the vane with
zero velocity, signifying that all of its original energy has been
utilized in performing work.

The above principles are made use of in the design of impulse
turbines, which consist of a series of vanes attached to the per-
iphery of a wheel. The angle 8 must be somewhat less than 180°
so that the jet in leaving a vane will not interfere with the suc-
ceeding vane. Making the angle 6 equal to 170° in place of 180°
reduces the force applied to the wheel by less than 1 per cent.

138. Forces Exerted upon Pipes.—In the preceding articles
of this chapter the discussion has been restricted to forces exerted
by jets impinging against flat and curved surfaces. As it was
always considered that the flow was free and unconfined the only
forces acting were dynamic.

Consideration will now be given to the longitudinal thrust
exerted upon a section of pipe by water flowing through it under
pressure. This thrust will usually be found to be the resultant of
both static and dynamic forces. The transverse forces which
determine the necessary thickness of pipe were discussed in

139. Straight Pipe of Varying Diameter.—Under conditions of
steady flow through a straight pipe of varying diameter there is a
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longitudinal thrust exerted upon the pipe. This thrust is the
resultant of a dynamic force, a static pressure, and frictional
resistance.

Fig. 130 shows a straight section of converging pipe. Let pi,
a1, and v; represent respectively the pressure, area, and mean veloc-
ity at AB and p2, a2, and v2 the corresponding values at CD.
In flowing from AB to CD the water is accelerated from v; to v
and the force, P, producing this acceleration is the resultant of
all the component forces acting on the mass ABCD. These forces
consist of the pressures on the sections AB and CD, the pressure
exerted by the pipe walls ACBD and the force of gravity, the last

dRydR
I
. |
1dRe
C
Py
ba > a
Qy ——— L]
v A
v ) )
:dR:
1
©
' :
|
U
dR,| @R
F1a. 130.

of which can be neglected since it acts vertically and has no com-
ponent in the direction of acceleration. The pressures on AB and
CD are a;,p1 and azp2 respectively, a;p1 acting in the direction
of acceleration and azp2 being opposed to it. The pressure, dR,
exerted on the water by any differential area, da, of the pipe
walls will be inclined slightly from the normal toward the direction
of flow on account of friction. The vertical component of dR,
being normal to the direction of acceleration may be neglected,
leaving dR, as the only component to be considered. All the
values of dR, for the various elementary areas of pipe wall, being
parallel and acting in the same direction, may be combined into
the resultant, R,, whose magnitude is as yet unknown but whose
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direction is opposed to acceleration. Therefore the force pro-
ducing acceleration,

P=a1p1-—a2p2—-R,. e e e e e e . (32)
But in Art. 131 it was shown that
wa

P=M@z—v) =22 (5—vy), . . . . (33)

g
and therefore, from equations (32) and (33),

wai1v1

R:=aip1—azp2— (v2—v1). . . . . (34)
Since R; is the X-component of the forces exerted upon the water
by the pipe it follows that the thrust exerted upon the section of
pipe by the water must be equal and opposite to R., or in other
words the thrust will act toward the right in Fig. 130.

Considering a straight section of pipe of constant diameter
throughout, equation (34) reduces to '

R.=a(p1—p2), . - . . . . . . . (35

since a; =az=a, and v; =v2. - In equation (35) p1—p2 is the drop
in pressure resulting from friction between sections AB and CD.
140. Pipe Bends.—The thrust exerted upon a curved section

of pipe of either constant or
varying diameter is the re-

Aowe sultant of component forces
similar to those discussed in

/ /o the preceding article. The

x / chief difference lies in the fact

/ that the resultant thrust on

/ a curved section of pipe has

A / /. both X- and Y-components
/ R, since there is a change in ve-

/ locity along both of these axes.

Fig. 131 shows a pipe
bend, having a diameter de-
Ry-——-—- g creasing from AB to CD and

Fia. 131. a deflection angle, 6. Let R;
and R, represent the X- and

Y-components of the forces exerted by the pipe upon the water.

Y
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The X- and Y-components of the thrust exerted by the water upon
the pipe are equal in magnitude but opposite in direction to R,
and R, respectively. Assuming that the bend lies in a horizontal
plane so that the action of gravity is normal to the direction
of acceleration and therefore may be ignored, the resultant X and
Y forces producing acceleration are,

. P,=a;p1—azpz cos 0—R,=w7Q(vz cos —v;), . (36)

,,=—a2pzsin0+R,=?vzsin0, N G 1))

the mght—ha.nd members in these equations representing the in-
crease in momentum along the X- and Y-axes resulting from the
accelerating forces.

" From the above equations,

R,=aip1—azp2 cos 0+3”-gg(v1-v2 cosf), . . . (38)

R,,=a2pzsin0+w7szsin0. B :1¢)

If the pipe bend is one of constant diameter throughout,
a1 =az, vy =ve, and P1=p2 (approx1mately), and the equations
reduce to

R,=(ap+1%>(l—cosl9), P (1))

R,,=(ap+'ﬂ;f>sino. L @
If the angle 8 equals 90° these equations become

R.=R _ap+1-”ﬂ2..........(42)

141, Water Hammer in Pipe Lines.—In Fig. 132 is shown a
pipe line leading from a reservoir, A, and discharging into the air at
B near which is located a gate valve. If the valve is suddenly
closed a dynamic pressure is at once exerted in the pipe in excess of
the normal static pressure. The magnitude of this pressure is
frequently much greater than that of any static pressure to which
the pipe may ever be subjected and the possibility of the occurrence
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of such pressure must therefore be investigated in connection with
the design of any pipe line of importance.

This dynamic pressure, commonly called water hammer, is
the result of a sudden transformation of the kinetic energy of the
moving mass of water within the pipe into pressure energy. Since
force equals mass times acceleration, or

dv
P—M—‘—i—t, S %))

it follows that if the velocity of the mass M could be reduced from
v to zero instantaneously, this equation would become

P=M§,........(44)

or in other words the pressure resulting from the change would be
infinite. Such an instantaneous change is, however, impossible.

p—

[ 4

- 4 "ol

Fic. 132.

Consider the conditions within the pipe immediately following
the closure of the valve. Letl, Iz, ls, . . . L, represent infinitesi-
mally short sections of pipe as shown in Fig. 132. The instant
the valve is closed, the water in contact with it in section [; is
brought to rest, its kinetic energy is transformed into pressure
energy, the water is somewhat compressed and the pipe wall
with which it is in contact expands slightly as a result of the
increased stress to which it is subjected. Because of the enlarged
cross-sectional area of /; and the compressed condition of the water
within it, a greater mass of water is now contained within this sec-
tion than before the closure. It is evident then that a small volume
of water flowed into section !, after the valve was closed. An
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instant later a similar procedure takes place in I and then in I3, so
that evidently a wave of increased pressure travels up the pipe
to the reservoir, The instant this wave reaches the reservoir the
entire pipe is expanded and the water within it is compressed
by a pressure greater than that due to the normal static head.
There is now no longer any moving mass of water within the pipe,
the conversion of whose kinetic energy into pressure energy serves
to maintain this high pressure and therefore the pipe begins to
contract and the water to expand with a consequent return to
normal static pressure. This process starts at the reservoir and
travels as a wave to the lower end. During this second period
some of the water stored within the pipe flows back into the
reservoir but on account of the inertia of this moving mass an
amount flows back greater than the excess amount stored at the
end of the first period so that the instant this second wave reaches
the valve the pressure at that point drops not only to the normal
static pressure but below it. A third period now follows during
which a wave of pressure less than static sweeps up the pipe to
the reservoir. When it reaches the reservoir the entire pipe is
under pressure less than static but since all the water is again at
rest the pressure in l, immediately returns to the normal static
pressure due to the head of water in the reservoir. This starts a
fourth period marked by a wave of normal static pressure moving
down the pipe. When the valve is reached the pressure there is
normal and for an instant the conditions throughout the pipe are
similar to what they were when the valve was first closed. The
velocity of the water (and the resultant water hammer) is now,
however, somewhat less than it was at the time of closure because
of friction and the imperfect elasticity of the pipe and the water.

Instantly another cycle begins similar to the one above
described, and then another, and so on, each set of waves succes-
sively diminishing, until finally the waves die out from the influ-
ences above mentioned.

Equation (44) shows that for instantaneous closure of valve
the pressure created would be infinite if the water were incom-
pressible and the pipe were inelastic. Instantaneous closure is,
however, physically impossible. To determine the amount of
excess pressure actually resulting from water hammer it is neces-
sary to take into consideration the elasticity of the pipe and the
compressibility of water. This leads to a rather lengthy mathe-
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matical analysis which will here be avoided and there will be given
only the resulting workable equations. The following nomen-
clature will be used, all units being expressed in feet and seconds
except E and E’, which are in pounds per square inch:

b=thickness of pipe walls;

D =inside diameter of pipe;

E =modulus of elasticity of pipe walls in tension;
E’=modulus of elasticity of water in compression;

g =acceleration of gravity;

h=head due to water hammer (in excess of static head);
H =normal static head in pipe;

L=length of pipe line;

T =time of closing valve;

v=mean velocity of water in pipe before closure of valve;
v, = velocity of pressure wave along pipe.

142. Formulas for Water Hammer.—In the following dis-
cussion whenever the term ‘‘ pressure ”’ is used it is understood to
mean ‘ pressure due to water hammer ”’ and is the amount of
pressure in excess of that due to the normal static head.

If the valve is closed instantaneously the pressure in I; imme-
diately rises t0 Pmax and remains at this value while the pressure
wave travels to the reservoir and returns. The time required

for the wave to travel to the reservoir and back to the valve is ?)—L
w

The pressure in I, reaches this same pmsx but remains at that
value only for an instant. At any intermediate section, pmax
is maintained only until the wave of reduced pressure reaches that
section. If the time taken to completely close the valve is

exactly %é,pmu will occur only in section l;, and will last only
w

for an instant, being immediately lowered by the return of the
static pressure wave. If the time of closing the valve is greater

than i—L, Pmax Will never be attained since the wave of reduced
w

pressure will then have reached I; before the valve is completely
closed or pmax is reached.

Evidently two formulas are necessary; one to determine the
maximum water hammer, when the time of closure is less than
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i—L, and the other to determine the ordinary water hammer that
w

occurs when the time of closure is greater than i—L,.as is usually
w

the case.

The same formula for the determination of maximum water
hammer has been qutte generally adopted. The general expres-
sion is,

hm,,:”%, T (1))
where '
py= 2060 . (46)
\/1+@ |
Eb
Substituting this value in equation (45),
b= L @D
[ ED
Eb
For steel pipe this reduces to .
hm,,,=—_145”—D. R 0T
\/H—0.0l 3

Frequently these expressions appear in different forms but they
may all be reduced to the above forms.

" There is no such general agreement as to the proper formula to
be used for the determination of ordinary water hammer when T

is greater than i—L Many formulas have been derived, some
w

giving results twice as great as others. Certain assumptions as
to the manner of valve closure, the effect of friction and the
manner in which the waves are reflected, etc., must be made
before any theoretical formula can be derived. It appears that
the main reason for the wide discrepancy in results lies in the
difference in these fundamental assumptions.

~ Assuming that the valve is closed in such manner that the
rate of rise in pressure will be constant throughout the entire
closure, OA, Fig. 133, represents the variation in pressure at the
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valve during the time 7', provided that no return pressure wave

interferes. After a time, 3—L, however, the returning wave will
w0

reach the valve and assuming that its intensity has been undi-
minished by friction or other cause, it will exactly annul the
tendency for the pressure to increase, due to continued closing,
and as a result the pressure remains constant during the remainder

('] /'on returns to valve

R (st valve)
"W Vaive stacts to close

i
Agh_.,
q

o 1% '

Ve >

I

Fia. 133.

of the time T, as shown by the horizontal line BA’. From

similar triangles,
w, 2L
—==:T.
: g Vo
From which

h=—10.. . . . . . . . . 49

This formula was first proposed by Professor Joukovsky ! of
Moscow, Russia, in 1898 and, it is claimed, was substantiated by a
series of experiments which he conducted.

Other commonly used formulas 2 are as follows:

h=]L2I—I+H‘/]—Z—2+N, .. . . (Allievi)

1 N. Jourovsky: Trans. of Prof. N. Joukovsky’s paper on Water Ham-
mer, by Boris Simin; Journal American Waterworks Association (1904).

* MiutoNn M. WARREN: Penstock and Surge-Tank Problems. Trans.
Amer. Soc. Civ. Eng., vol. 79 (1915). Contains discussions of all commonly
used water hammer formulas.
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where In
N= HT) ,
h-M(M+\/‘“— N?), . . (Johnson)
where
M=Lv and N=2gHT,
h=——L"T, . . . . . . (Waren)
o(7-5)
Yy
Ly
h_g_T' « + « « « +« + (Mead,etal)

Joukovsky’s formula gives results twice as great as Mead’s
formula. Johnson’s formula can readily be reduced to Allievi's.
It may be noted that these two formulas make k vary with H,
which the other formulas do not do. Justification for this varia-
tion is not apparent.

Eliminating Johnson’s formula (which reduces to Allievi’s),
no two of the above formulas give results that are at all similar
under all conditions. Discrepancies of from 100 to 200 per cent
are possible. A comprehensive and carefully conducted series of
experiments are necessary before any formula for ordinary water
hammer can be relied upon to give trustworthy results.

PROBLEMS

1. A jet 1 in. in diameter and having a velocity of 25 ft. per second strikes
normally against a fixed, flat plate. Determine the pressure on the plate.

2. In Problem 1, what would be the pressure on the plate if it were
moving with a uniform velocity of 10 ft. per second in the same direction
as the jet?

8. What should be the velocity of the plate, in Problem 2, if the jet is to
perform the maximum amount of work? Determine the corresponding
amount of work in foot-pounds per second.

4. A jet having a diameter of 2 in. and a velocity of 40 ft. per second
is deflected through an angle of 60° by a fixed, curved vane. Determine the
X- and Y-components of the force exerted.

8. Solve Problem 4 if the vane is moving with a velocity of 25 ft. per
second in the same ‘direction as the jet.

6. A 1}-in. nozzle has a coefficient of velocity of 0.97 and a coefficient
of contraction of unity. The base of the nozzle has a diameter of 4 in.,,
at which point the gage pressure is 80 lbs. per square inch. The jet is
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deflected through an angle of 150° by a double-cusped vane that has a
velocity, in the direction of the jet of 30 ft. per second. What is the pressure
exerted on the vane and what is the amount of work done expressed in
foot-pounds?

7. In Problem 6 determine the velocity the vane must have if the jet
is to perform the maximum amount of work. What is the maximum work
in foot-pounds?

8. If the jet, in Problem 6, strikes a series of vanes so arranged on the
periphery of a wheel that the entire jet is deflected through an angle of 170°,
what is the maximum amount of work that can be done?

9. A horizontal straight pipe gradually reduces in diameter from 12 in. to 6
in. If, at the larger end, the gage pressure is 40 lbs. per square inch and the
velocity is 10 ft. per second, what is the total longitudinal thrust exerted
on the pipe? Neglect friction.

10. A bend in a pipe line gradually reduces from 24 in. to 12 in. The
deflection angle is 60°. If at the larger end the gage pressure is 25 Ibs. per
square inch and the velocity is 8 ft. per second, determine the X- and Y-com-
ponents of the dynamic thrust exerted on the bend. Also determine the
X- and Y-components of the total thrust exerted on the bend, neglecting
friction.

11. A 24-in. cast-iron pipe { in. thick and 6000 ft. long discharges water
from a reservoir under a head of 80 ft. What is the pressure due to water
hammer resulting from the instantaneous closure of a valve at the discharge
end?

12. If the time of closing the valve, in Problem 11, is 6 sec., determine
the resulting pressure due to water hammer, comparing results obtained by
use of formulas by Joukovsky, Johnson, Warren and Mead.
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Absolute and gage pressure, 10
Absolute velocity, 214
Acceleration, 45, 48, 181, 202
Accuracy of computations, 5
Air in pipes, 164, 165
Algebraic transformation of orifice
formula, 80

of weir formula, 113
Allievi formula for water hammer, 228
Angle of heel, 40, 42
Angular velocity, 48

Approach, channel of, 71, 76, 103,

108
Approach, velocity of, 71, 76, 80, 103,
108, 112, 120, 128
Archimedes, principle of, 38
Atmospheric pressure, 9, 15, 17
Axis of moments, 25

Backwater, 204, 207

Barometer, mercury, 15
water, 16

Barr’s experiments, 123

Base formula, 52

Bazin experiments, 111
open-channel formula, 191
submerged-weir formula, 121
weir formula, 116

Bends in pipes, loss of head, 143, 162
coefficients for, 163
thrust at, 222

Bernoulli’s equation, 59, 63, 74, 87,

141

Bernoulli’s theorem, 57
application to hydrostatics, 60
in practice, 60

Boiling point of water, 2

Borda’s mouthpiece, 91

Bridge piers, 195
Broad-crested weirs, 129
Buoyancy, center of, 39
Buoyant force, 39, 40

Canals, 199
Capillary action, 4, 16
Cast-iron pipes, coefficients, 148, 149,
152, 153
Center of buoyancy, 39, 42
Center of gravity, 31, 39, 42
Center of pressure, 24, 29, 31, 32
and center of gravity, 31, 32
Channel entrance, 131, 202, 203
Channel of approach, 71, 76, 103, 108
Characteristics of jet, 71
Chezy formula, open channels, 185
pipes, 146
Chutes, 129
Cippoletti weir, 124
Circular channels, 176, 201
orifice, 71
Coefficient of contraction, nozzles, 89
orifices, 77, 78
tubes, 86, 88, 92, 93
weirs, 110
Coefficient of discharge, nozzles, 89
orifices, 78, 80
submerged orifice, 94
tubes, 86, 93
Coefficient of roughness, 185
Coefficient of velocity, nozzles, 90
orifices, 77, 78
tubes, 86, 93
weirs, 111
Coefficients of discharge, nozzles, 90
orifices, 79
tubes, 86
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Coefficients, hose, 150

open channels, 187, 190, 191

pipes, 148, 149, 153, 161, 162, 163

weirs, 108
Coefficient, weir, 111
Components of pressure, 33, 35
Compound pipes, 168
Compressibility of water, 3
Computations, accuracy of, §
Concrete pipes, coefficients, 148, 149,

153

Conduits, 135, 199
Conical tubes, 88
Conservation of energy, 59
Converging tubes, 88
Continuity of discharge, 53

of flow, 53, 140, 180, 202
Contraction, coefficient of, 77, 78, 89,

92, 110

crest, weirs, 101

end, weirs, 102

gradual, pipes, 143, 159

in channels, 183, 192

of jet, 72, 76, 77, 88, 92

of nappe, 103, 108, 110

sudden, pipes, 143, 158

suppressed, 84, 102

surface, weirs, 102

vertical, weirs, 103
Converging tubes, 88
Crest contraction, 101
Critical velocity, 136
Cross-section, most efficient, 198
Curves, backwater, 205

in open channels, 183, 196

in pipes, 143, 162
Curved surface, pressure on, 33

Dams, coefficients for, 127
p-essure against, 33, 34

Darcy, experiments on Pitot tube, 65,

66 -

modification of Pitot tube, 68
pipe formula, 147

Density of water, 2

Depth of flotation, 39

Differential gage, 18

Direction of resultant pressure, 7

INDEX

Discharge, 52 .
continuity of, 53, 140, 180
head lost at, 143, 155, 157, 183
under falling head, 96
Discharge coefficient, nozzles, 89
orifices, 78
tubes, 86, 93
Discussion of open-channel formulas,
191
of pipe formulas, 154
of weir formulas, 118
Distance, unit of, 1
Distilled water, properties of, 2
Distribution of velocities, 108, 138,
176
Diverging tube, 90
Divided flow, 169, 206
Dynamic force, 214-229

Efficient channel section, 198
Elasticity of water, 3
Elevation and air pressure, 9
Emptying vessel, 97
End contractions, weirs, 102
suppressed, 102
Energy and head, 54
kinetic, 54, 57
of position, 55, 57
of water in channel, 109, 179
of water in pipe, 139
per pound of water, 57, 140
potential, 55, 57
pressure, 56
English system of units, 1
Enlargement of section, channels, 193
pipes, 143
Entrance losses, channels, 183
pipes, 143, 155, 156
Entrance to channels, 131
Equation of continuity, 53, 181, 202

Falling head, discharge under, 96
Falls, 117
Floating bodies, 38
stability of, 39
Flow, continuity of, 53, 140, 180, 202
in open channels, 176-209
in rivers, 196
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Flow, non-uniform, 53, 201
over weirs, 101-134
steady, 53
stream line, 54, 136
through nozzles, 89
through orifices, 71-99
through pipes, 135-175
through tubes, 85-93
turbulent, 54, 136
uniform, 53
Fluids, definition, 1
Flumes, 199
Force, acting on mass, 212, 213
exerted on pipe, 220-223
exerted on vane, 213-218
Francis coefficient for weirs, 111
experiments, 111
formula for end contractions, 112
weir formula, 115
Free surface of liquid, 9
Freezing temperature of water, 2
Friction, 52
and distribution of velocities, 108,
138, 176
Bernoulli’s equation with, 59, 141
coefficients for hose, 150
coefficients for open channels, 187,
190, 191
coefficients for pipes, 148, 149, 153
formulas for open channels, 185—
191
formulas for pipes, 146-154
independent of pressure, 145 -
in open channels, 176, 184
in orifices, 76, 77
in pipes, 138-146
in Venturi meter, 64
of flowing water, 59, 138, 176
over weirs, 108
Fteley and Stearns, experiments, 111
weir formula, 116
Fundamental orifice formula, 73

Gage, differential, 18
hook, 131
mercury, 17
oil, 19
water stage, 132

Gage pressure, 10, 16
Ganguillet and Kutter, 185
Gases, 1, 9 ’
Gates, 95, 195
and valves, 143, 162
coefficients for, 96
pressure on, 26, 28, 32
Grade line, hydraulic, 144, 154, 164,
184, 191
Gradient, hydraulic, 144, 154, 164,
184, 191

Hazen-Williams formula, 150
Head, definition of, 54
energy and, 54
lost at bends or curves, 143, 162,
" 183,196
lost at discharge, 143, 155, 157, 194
lost at entrance, 143, 1§5, 156, 193
lost at obstructions, 143, 162, 195
lost by contractions, 143, 158, 192
lost by enlargements, 143, 160, 193
lost by friction, 59
lost by friction in open channels,
181, 183, 184 .
lost by friction in pipes, 140, 143,
144
lost in nozzles, 90
lost in orifices, 81
lost in tubes, 87
measurement of, 131
pressure, 13, 16, 56
velocity, 55
Height of weir, 103
Herschel, Venturi meter, 61
Hook gage, 4, 131
Horizontal and vertical components
of pressure, 32, 34
Horizontal orifice, 71, 75
Horton’s values of “n,” 187
weir coefficients, 127
Hose, 150
coefficients, 150
Hydraulic grade line, 144, 154, 164,
184, 191
gradient, 144, 154, 164, 184, 191
jack, 13
radius, 135, 176
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Hydraulics, definition, 1

or rivers, 196
Hydrodynamics, 211-230

definition, 1

fundamental principles, 211
Hydrokinetics, 1, 51-210
Hydrostatic pressure, 7-37
Hydrostatics, 1, 7-44

Immersed and floating bodies, 3844
Impurities in water, 2

Incomplete contractions, 84, 103
Intensity of pressure, 7, 8, 10, 30, 35
Inversion of jet, 73
Inward-projecting tubes, 93
Irregular sections of channels, 197

Jack, hydraulic, 13
Jet, characteristics of, 71
contraction of, 72, 76, 77, 88, 92
definition, 71
deflected by curved vane, 216
force of, 213-218
forms assumed by, 72
impinging on fixed plate, 214
impinging on moving plate, 215
inversion of, 73
path of, 82
pressure in, 72
velocity with respect to vane, 217
work done by, 218
Johnson water-hammer formula, 229
Joukovsky, water-hammer experi-
ments, 228
formula, 228

Kinetic energy, 54, 57
in channel of approach, 109
in open channels, 109, 179
in pipes, 139

King pipe formula, 152
submerged-weir formula, 121
weir formula, 117 -

Kutter formula, 185
table for solving, 186

Lea, investigation of pipes, 152
Linear acceleration, 45

INDEX

Liquid, buoyant force of, 38
definition, 1
free surface of, 9
in motion, 51
intensity of pressure within, 7, 8
relative equilibrium, 45
rotating, 47
surface tension, 4
uniformly accelerated, 45
water most common, 51
Long pipes, 166
Loss of head, at discharge, 143, 155,
157, 183, 194
_ at entrance, 143, 155, 156, 183, 194
due to bends or curves, 143, 162,
183, 196
due to contractions, 143, 158, 192
due to enlargements, 143, 160, 193
due to friction in channels, 181, 184
due to friction in pipes, 140-146
due to obstructions, 143, 162, 195
in nozzles, 90
in open channels, 181
in orifices, 81
in pipes, 140
in tubes, 87
Manning formula, 188
Mead water-hammer formula, 229
Mean velocity over weirs, 107
Measurement of head, 131
Mercury barometer, 15
gage, 17
Metacenter, 40
Metacentric height, 40
Meter, Venturi, 61
Modifications of fundamental weir
formula, 112
Modulus of elasticity, 3
Moment of inertia, 25
Momentum, definition, 211
Motion, stream line, 54, 136
turbulent, 54, 136
Mouthpiece, Borda’s, 91

Nappe, 101
contracted section of, 103
contraction of, 108, 110
depth of mean velocity in, 108
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Nappe, pressure in, 104
velocities in, 104, 107, 111

Negative pressure, 10

Newton’s laws of motion, 211

Non-uniform flow, 53, 201

Nozzles, 89

Numerical computations, 5

Obstructions in channels, 183, 195
in pipes, 143, 162
Oildifferential gage, 19
Open-channel friction formulas, 185—
191
Bazin formula, 191
Chezy formula, 185
Kutter formula, 185, 188
-Manning formula, 188
Open channels, backwater in, 204
bends or curves in, 183, 196
contractions in section, 183, 192
description and definition, 176
discussion of formulas, 191
divided flow in, 206
efficient section for, 198
energy of water in, 109, 179
enlargement in section, 183, 193
entrance to, 131, 183
friction in, 176
hydraulic gradient of, 184, 191
hydraulic radius of, 176
loss of head in, 181
non-uniform flow, 201
obstructions in, 183, 195
water surface of, 184, 191
wetted perimeter of, 176
Orifice, circular, 71
coefficients, 76
definition and description, 71
discharge under falling head, 96
flow through, 71-85, 93-98
fundamental formula, 73
head lost in, 81
horizontal, 71, 75
partially submerged, 94
rectangular, 71, 82
square, 71
submerged, 93
suppressed contraction, 84

Orifice, under low heads, 82
vertical, 71
with velocity of approach, 80

Parabolic weir, 101

Partially submerged orifices, 94

Pascal’s law, 8

Path of jet, 82

Perfect liquid, 4

Piezometer tubes, 5, 16

Pipe-friction formulas, 146-154
Chezy formula, 146
Dracy formula, 147
Hazen-Williams formula, 150
King formula, 152
non-turbulent flow, 154

Pipes, bends or curves in, 143, 162

branching, 166

coefficients, 148, 149, 151, 153

compound, 168

continuity of flow, 140

contractions in, 143, 158

critical velocity in, 136

description and definition, 135

discharge from, 143, 155, 157

divided flow in, 169

energy of water in, 139

enlargements in, 143, 160

entrance to, 143, 155, 156

flow through, 135-175

force exerted upon, 220

friction coefficients, 148, 149, 153

friction in, 138, 144

hydraulic gradient, 144, 154, 164

hydraulic radius of, 135 ’

loss of head in, 140

more than one diameter, 142, 172

obstructions in, 143, 162

special problems, 165

tensile stress in walls, 35

thrust at bends, 222

viscosity, effect on friction, 145

water hammer in, 223

wetted perimeter of, 135

Piston, 13, 56

Pitot tube, 6569 -

Plate, jet impinging against, 214, 215

" Potential energy, 55, 57
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Pressure, absolute and gage, 10

atmospheric, 9, 15

center of, 24, 29, 31

energy, 56, 62

head, 13, 16, 56

intensity of, 7, 8, 10, 30, 32, 35

negative, 10 )

on curved surfaces, 33, 35

on plane areas, 23

on surfaces, 23-37

relative, 10

transmission of, 13

vapor, 14, 164
Principle of Archimedes, 38
Principles of equilibrium, 8
Principles of hydrokinetics, 51-70
Principles of hydrostatic pressure, 7-

22

Pumps, suction, 20

Radius, hydraulic, 135, 176
of bends in pipes, 163
Reaction of jet, 213
Rectangular channels, 176, 199
orifice, 71, 82
weir, 101
Relative and absolute velocities, 214
Relative equilibrium of liquids, 45-50
Relative pressure, 10
Resultant pressure, direction of, 7, 33
position of, 32
Rivers, hydraulics of, 196
Rotating vessel, 47

Salt water, 3

Scow, stability of, 42

Section of greatest efficiency, 198

Semicircular channel, 198

Sewers, 135, 176

Ships, stability of, 40

Siphon, 20

Skin of water surface, 4

Slope, “s,” 145, 184

Special pipé problems, 165

Specific gravity of mercury, 17
of water, 2

Square orifice, 71

Stability of scow, 42

INDEX

Stability of ship, 40
Standard short tube, 85
Steady flow, 53
Stream line motion, 54, 136
Submerged bodies, 38
orifices, 93
weirs, 95, 118, 120, 195
Suction pumps, 20
Sudbury conduit, 177
Summit of pipe, 164, 165
of siphon, 20
Suppressed contraction, orifices, 84
Suppressed weirs, 102
Suppression of contraction, 84, 102
Surface contraction, 102
Surfaces, pressure on, 23-37
Surface tension, 4, 177

Tangential stress of water, 1, 4, 8
Temperature, 2
effect on critical velocity, 138
effect on viscosity, 138
effect on weight of water, 2
Tensile stress in pipe walls, 35
Theoretical discharge over weirs, 105
velocity over weirs, 107
velocity through orifices, 74
Thickness of pipes required, 36
Thompson’s experiments, 123
Time of emptying vessel, 97
Time, unit of, 1
Torricelli’s theorem, 76
Transmission of pressure, 13
Trapezoidal channels, 176, 199
weirs, 123
Triangular weirs, 121
Tube, definition of, 71
Tubes, capillary action in, 4
converging, 88
diverging, 90
immersed in flowing water, 65
standard short, 85
Turbulent motion, 54, 136

Uniform flow, 53
Units in hydraulics, 1
Unsteady flow, 53
U-tube, 17
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Vacuum, 10, 17
amount of, 10
perfect, 10
Vane, jet deflected by, 215, 216
fixed curved, 215
moving curved, 216
work done on, 218
Vapor pressure,-14, 164
variation with temperature, 15
Velocities, distribution of, 138, 176
in vertical, 177
Velocity, absolute and relative, 214
at any depth, over weirs, 104
critical, 136
curves of, 177
from orifices, 74
head, 55, 81
of approach, orifice, 71, 75, 76, 78,
80
weir, 103, 108, 112, 114, 120, 128
Velocity coefficient, nozzles, 90
orifices, 77, 78
tubes, 86, 93
weirs, 111
Vena contracta, 72
Venturi meter, 61
Vertical contraction, 103
Vertical jets, 75
Vertical orifice, 71
Vertical velocity curves, 177
Vessel, rotating, 47
time of emptying, 96
with constant acceleration, 45
Viscosity, 4, 137, 143

Warren water-hammer formula, 229
Water barometer, 16

boiling point of, 2

compressibility of, 3

dynamic force, 214-229

freezing point of, 2

hammer, 223

maximum density of, 2

physical properties of, 2-5
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Water, weight of, 2
Weight of submerged bodies, 38
of mercury, 17
of water, 2
unit of, 1
Weir, broad crested, 129
channel of approach, 71, 76, 103,
108
Cippoletti, 124
coefficient, 111, 127
coefficients, 108, 110, 111
conditions for accurate use, 132
definition and description, 101
discharge formulas for sharp crest,
115
discussion of formulas, 118
experiments, 111, 115
formula for mean velocity, 105
fundamental formulas, 83, 107, 112
head measurement, 131
height of, 103
modification of fundamental for-
mula, 112
not sharp-crested, 101, 103, 125
range of accuracy, 132
rectangular, 101
sections, 126
sharp-crested, 101
submerged, 95, 118
theoretical formula for discharge,
105
transformation of formula, 113
trapezoidal, 101, 123
triangular, 101, 121
velocity of approach to, 103
with end contractions, 102, 112
with end contractions suppressed,
102
Wetted perimeter, 135, 176
Wooden pipes, coefficients, 148, 149,
153
Work done on vane, 218
on mass of water, 58
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